Math, asked by swathi0073, 11 months ago

a pair of irrational numbers whose proudct is a rational number is. (a)√16,√4 (b) √5√4 (c) √3,√27 (d) √36,√2​

Answers

Answered by mathdude500
0

Answer:

\boxed{\sf \:  Product \: of \:  \sqrt{16}, \sqrt{4} \: and  \: \sqrt{3}, \sqrt{27}   \: are \: rational \: number \: }\\

Step-by-step explanation:

Consider,

\sf \: \sqrt{16}  \times  \sqrt{4}  \\

\sf \:  =  \: 4 \times 2 \\

\sf \:  =  \: 8 \\

Hence,

\implies\sf \:  \sqrt{16} \times  \sqrt{4}    =  \: 8 \\

\implies\sf \:  \sqrt{16} \times  \sqrt{4}   \: is \: a \: rational \: number \\

Now, Consider

\sf \:  \sqrt{5}  \times  \sqrt{4}  \\

\sf \: =  \:   \sqrt{5 \times 4}  \\

\sf \: =  \:   \sqrt{20}  \\

Thus,

\implies\sf \:  \sqrt{5}  \times  \sqrt{4} \: is \: an \: irrational \: number  \\

Now, Consider

\sf \: \sqrt{3}  \times  \sqrt{27}  \\

\sf \:  =  \: \sqrt{3 \times 27}  \\

\sf \:  =  \: \sqrt{81}  \\

\sf \:  =  \: 9 \\

Thus,

\implies\sf \:  \sqrt{3} \times  \sqrt{27}   \: is \: a \: rational \: number \\

Now, Consider

\sf \:  \sqrt{36}  \times  \sqrt{2}  \\

\sf \:   =  \: 6  \times  \sqrt{2}  \\

\sf \:   =  \: 6 \sqrt{2}  \\

Thus,

\implies\sf \:  \sqrt{36}  \times  \sqrt{2} \: is \: an \: irrational \: number  \\

Hence,

\implies\sf \: Product \: of \:  \sqrt{4}, \sqrt{16} \: and  \: \sqrt{3}, \sqrt{27}   \: are \: rational \: number. \\

Similar questions