Math, asked by simrankataria, 4 months ago

A pair of tangents to a circle which is inclined to each other at an angle of 60° are drawn at ends of two radii. The angle between these radii must be: / एक वृत्त की दो स्पर्श रेखाएँ एक दूसरे के साथ 60° का कोण बनाती हैं। वृत्त की जिन दो त्रिज्याओं के अंत बिंदुओं पर स्पर्श रेखाएं खीचीं गयी है, वे आपस में एक दूसरे के साथ कितना कोण बनाती हैं? *

30°

60°

140°

120°​

Answers

Answered by RvChaudharY50
4

Given :- A pair of tangents to a circle which is inclined to each other at an angle of 60° are drawn at ends of two radii. The angle between these radii must be: / एक वृत्त की दो स्पर्श रेखाएँ एक दूसरे के साथ 60° का कोण बनाती हैं। वृत्त की जिन दो त्रिज्याओं के अंत बिंदुओं पर स्पर्श रेखाएं खीचीं गयी है, वे आपस में एक दूसरे के साथ कितना कोण बनाती हैं ? 

A) 30°

B) 60°

C) 140°

D) 120°

Solution :-

from image , we have,

  • OA and OC = radius of circle with centre O .
  • AB and CB tangents from circle meets at B .
  • ∠ABC = 60° (given) .

we know that,

  • Tangent to a circle is always perpendicular to the radius.

So,

  • ∠OAB = 90°
  • ∠OCB = 90° .

Now, in quadrilateral OABC , we have,

→ ∠ABC + ∠OAB + ∠OCB + ∠AOC = 360° (angle sum property.)

→ 60° + 90° + 90° + ∠AOC = 360°

→ 240° + ∠AOC = 360°

→ ∠AOC = 360° - 240°

→ ∠AOC = 120° (Option D) (Ans.)

Hence, The angle between these radii must be 120°.

Learn more :-

PQ and XY are two chords of a circle such that PQ = 6 cm and XY = 12 cm and PQ||XY. If the distance between the chords i...

https://brainly.in/question/24793483

PQRS is a cyclic quadrilateral with PQ = 11 RS = 19. M and N are points on PQ and RS respectively such that PM = 6, SN =...

https://brainly.in/question/27593946

Attachments:
Similar questions