A pair of tangents to a circle which is inclined to each other at an angle of 60° are drawn at ends of two radii. The angle between these radii must be: / एक वृत्त की दो स्पर्श रेखाएँ एक दूसरे के साथ 60° का कोण बनाती हैं। वृत्त की जिन दो त्रिज्याओं के अंत बिंदुओं पर स्पर्श रेखाएं खीचीं गयी है, वे आपस में एक दूसरे के साथ कितना कोण बनाती हैं? *
30°
60°
140°
120°
Answers
Given :- A pair of tangents to a circle which is inclined to each other at an angle of 60° are drawn at ends of two radii. The angle between these radii must be: / एक वृत्त की दो स्पर्श रेखाएँ एक दूसरे के साथ 60° का कोण बनाती हैं। वृत्त की जिन दो त्रिज्याओं के अंत बिंदुओं पर स्पर्श रेखाएं खीचीं गयी है, वे आपस में एक दूसरे के साथ कितना कोण बनाती हैं ?
A) 30°
B) 60°
C) 140°
D) 120°
Solution :-
from image , we have,
- OA and OC = radius of circle with centre O .
- AB and CB tangents from circle meets at B .
- ∠ABC = 60° (given) .
we know that,
- Tangent to a circle is always perpendicular to the radius.
So,
- ∠OAB = 90°
- ∠OCB = 90° .
Now, in quadrilateral OABC , we have,
→ ∠ABC + ∠OAB + ∠OCB + ∠AOC = 360° (angle sum property.)
→ 60° + 90° + 90° + ∠AOC = 360°
→ 240° + ∠AOC = 360°
→ ∠AOC = 360° - 240°
→ ∠AOC = 120° (Option D) (Ans.)
Hence, The angle between these radii must be 120°.
Learn more :-
PQ and XY are two chords of a circle such that PQ = 6 cm and XY = 12 cm and PQ||XY. If the distance between the chords i...
https://brainly.in/question/24793483
PQRS is a cyclic quadrilateral with PQ = 11 RS = 19. M and N are points on PQ and RS respectively such that PM = 6, SN =...
https://brainly.in/question/27593946