Physics, asked by aishwarya2255, 10 months ago

A parallel plate capacitor of area 2m2 with a medium of dielectric constant 7 is charged to a potential of 100v. if the plate separation is 0.1mm, calculate the capacitance and the energy stored in the condenser

Answers

Answered by ShivamKashyap08
16

Answer:

  • The Capacitance (C) is 1.24 × 10⁻⁶ F
  • The energy stored (U) is 6.2 × 10⁻³ J

Given:

  1. Area (A) = 2 m²
  2. Dielectric constant (K) = 7
  3. Separation (d) = 0.1 mm = 0.1 × 10⁻³ m
  4. Voltage (V) = 100 V

Explanation:

\rule{300}{1.5}

From the formula we know,

\large\bigstar\;\underline{\boxed{\sf C=\dfrac{K\in_{o}A}{d}}}

Here,

  • K Denotes Di-electric constant.
  • A Denotes Area.
  • d Denotes Separation.

Substituting the values,

\longrightarrow\sf C=\dfrac{7\times 8.85\times 10^{-12}\times 2}{0.1 \times 10^{-3}}\\\\\\\longrightarrow\sf C=\dfrac{7\times 8.85\times 10^{-12}\times 2}{1 \times 10^{-4}}\\\\\\\longrightarrow\sf C=14\times 8.85\times 10^{-12}\times 10^{4}\\\\\\\longrightarrow\sf C=123.9\times 10^{-8}\\\\\\\longrightarrow\sf C=1.239\times 10^{-6}\\\\\\\longrightarrow\sf C\approx 1.24\times 10^{-6}\\\\\\\longrightarrow\large{\underline{\boxed{\textsf{\textbf{C = 1.24 $\times$ 10$^{\text { -6}}$ F}}}}}

The Capacitance (C) is 1.24 × 10⁻⁶ F.

\rule{300}{1.5}

\rule{300}{1.5}

Now, we know,

\large\bigstar\;\underline{\boxed{\sf U=\dfrac{1}{2}CV^{2}}}

Here,

  • C Denotes Capacitance.
  • V Denotes Voltage.

Substituting the values,

\longrightarrow\sf U=\dfrac{1}{2}\times 1.24\times 10^{-6}\times (100)^{2}\\\\\\\longrightarrow\sf U=\dfrac{1}{2}\times 1.24\times 10^{-6}\times 10^{4}\\\\\\\longrightarrow\sf U=0.62\times 10^{-2}\\\\\\\longrightarrow\sf U=6.2\times 10^{-3}\\\\\\\longrightarrow \large{\underline{\boxed{\textsf{\textbf{U = 6.2 $\times$ 10$^{\text { -3}}$ J}}}}}

The energy stored (U) is 6.2 × 10⁻³ J.

\rule{300}{1.5}

Similar questions