Physics, asked by 8010631533rs, 3 months ago

A parallel-plate capacitor of capacitance C consists of two identical circular plates each of radius r, seperated by a distance d. The capacitance of a capacitor having plates of radius r/3 and seperated by a distance d/3 would be
A. 3C
B. C
C. C/3
D. C/9​

Attachments:

Answers

Answered by nirman95
5

Given:

A parallel-plate capacitor of capacitance C consists of two identical circular plates each of radius r, seperated by a distance d.

To find:

New capacitance when plates have radius r/3 and seperated by a distance d/3 ?

Calculation:

Initially, Capacitance of Parallel Plate Capacitor will be :

 \rm \: C =  \dfrac{A  \epsilon_{0} }{d}

 \rm  \implies\: C =  \dfrac{\pi {r}^{2}  \epsilon_{0} }{d}

Now, new radius is r/3 and distance between plates is d/3.

 \rm  \implies\: C_{new} =  \dfrac{\pi { \bigg( \dfrac{r}{3} \bigg) }^{2}  \epsilon_{0} }{  \bigg(\dfrac{d}{3} \bigg) }

 \rm  \implies\: C_{new} =  \dfrac{3\pi  {r}^{2}  \epsilon_{0} }{ 9d }

 \rm  \implies\: C_{new} =  \dfrac{1}{3}   \times \dfrac{\pi  {r}^{2}  \epsilon_{0} }{ d }

 \rm  \implies\: C_{new} =  \dfrac{C}{3}

So, new capacitance is C/3.

Answered by krohit68272
0

Explanation:

Given:</p><p></p><p>A parallel-plate capacitor of capacitance C consists of two identical circular plates each of radius r, seperated by a distance d.</p><p></p><p>To find:</p><p></p><p>New capacitance when plates have radius r/3 and seperated by a distance d/3 ?</p><p></p><p>Calculation:</p><p></p><p>Initially, Capacitance of Parallel Plate Capacitor will be :</p><p></p><p>\rm \: C = \dfrac{A \epsilon_{0} }{d}C=dAϵ0</p><p></p><p>\rm \implies\: C = \dfrac{\pi {r}^{2} \epsilon_{0} }{d}⟹C=dπr2ϵ0</p><p></p><p>Now, new radius is r/3 and distance between plates is d/3.</p><p></p><p>\rm \implies\: C_{new} = \dfrac{\pi { \bigg( \dfrac{r}{3} \bigg) }^{2} \epsilon_{0} }{ \bigg(\dfrac{d}{3} \bigg) }⟹Cnew=(3d)π(3r)2ϵ0</p><p></p><p>\rm \implies\: C_{new} = \dfrac{3\pi {r}^{2} \epsilon_{0} }{ 9d }⟹Cnew=9d3πr2ϵ0</p><p></p><p>\rm \implies\: C_{new} = \dfrac{1}{3} \times \dfrac{\pi {r}^{2} \epsilon_{0} }{ d }⟹Cnew=31×dπr2ϵ0</p><p></p><p>\rm \implies\: C_{new} = \dfrac{C}{3}⟹Cnew=3C</p><p></p><p>So, new capacitance is C/3.</p><p></p><p>

Similar questions