Math, asked by saranyapk9160, 1 year ago

A parallogram has two side 60m and 25m and a digonal 65m long. Find the area of the parallogram

Answers

Answered by Brâiñlynêha
0

\huge\mathbb{\underline{\underline{SOLUTION:-}}}

\bold{Given}\begin{cases}\sf{side\:of\: parallelogram=60m\:and\:25m}\\ \sf{one\: diagonal=65m}\end{cases}

\huge\bf{To\:Find}

The area of parallelogram

\sf\underline{\pink{According\:to\: Question:-}}

\sf\underline{\underline{\red{Area\:of\: parallelogram=Base\times height}}}

  • In parallelogram there is two triangle
  • if we add the area of 2 triangle we get the area of parallelogram

Area of parallelogram is

\sf 2\times Area \:of\: triangle

  • Now lets find the area of ∆

\sf By\: heron's\: formula\\ \\ \sf\implies \sqrt{s(s-a)(s-b)(s-c)}

\bold{we\:have}\begin{cases}\sf{a=60m}\\ \sf{b=25m}\\ \sf{c=65m}\end{cases}

\tt s=semi\:peimeter\\ \\ \tt s=\frac{a+b+c}{2}\\ \\ \tt s=\frac{65+25+60}{2}=\frac{150}{2}\\ \\ \sf\implies semiperimeter=72m

\boxed{\sf{Now\:Area\:of \triangle}}

\sf Area_\triangle=\sqrt{75(75-65)(75-60)(75-25)}\\ \\ \sf\leadsto Area_\triangle=\sqrt{75\times 10\times 15\times 50}\\ \\ \sf\leadsto Area_\triangle=\sqrt{15\times 5\times 10\times 15\times 10\times 5}\\ \\ \sf\leadsto Area_\triangle=15\times 5\times 10\times 5\\ \\ \sf\leadsto Area_\triangle=750\times 5\\ \\ \sf\implies Area_\triangle=3750

  • The area of the triangle of parallelogram is
  • \sf\implies 3750m{}^{2}

\tt Area\:of\:parallelogram \\ \\ \sf\leadsto  2\times Area \:of\: triangle \\ \\ \tt\leadsto Area\:of_{parallelogram}=2\times 3750\\ \\ \tt\implies Area\:of_{paralleogram}=7500cm{}^{2}

\boxed{\mathfrak{\purple{Area\:of_{parallelogram}=7500cm{}^{2}}}}

#BAL

#answerwithquality

Similar questions