Math, asked by mdfaisal4395gmailcom, 2 months ago

A park, in the shape of a quadrilateral ABCD has angle B=900 , AB=9m, BC=40m, CD=15m, DA=28m. How much area does it occupy?​

Answers

Answered by ananya4das
2

\huge\underline \mathfrak \color {Aqua}{❥ \: Answer : }

306 m ²

\huge\underline\mathfrak \color {deeppink}{ ❥Explanation : }

To find :-

The area of the park in the shape of a quadrilateral ABCD.

Given:-

The quadrilateral park has angle B=90° .

Length of sides : AB=9m,BC=40m,CD=15 m & DA=28 m

Construction: -

Let ABCD be the given quadrilateral.

Join AC in quadrilateral ABCD

Formula used :-

\Rightarrow \color{lime}Hypotenuse ²= base ² + height ²

 \Rightarrow\color{yellow}Area  \: of  \triangle \:  =  \frac{1}{2}  \times base \times height

 \small \Rightarrow  \color{pink}Area \: of Scalen \:\triangle =  \sqrt{s(s - a)(s - b)(s - c)}

Solution:

Now we will calculate the length of AC by Pythagoras Formula .

  \sf \therefore {AC} =  \sqrt{ {40}^{2} +  {9}^{2}  }  \\  \:  \:  \qquad\quad  \Rightarrow \sqrt{1600 + 81}  \\  \quad \Rightarrow \sqrt{1681}  \\  \:  \: \color{red}  \Rightarrow41m \:  \:

The area of quadrilateral ABCD is equal to sum of area of Triangle ABC and Triangle ACD.

  \small\sf \: Now  \: the  \: area  \: of \triangle  \: ABC \:  =  \frac{1}{2}  \times 40 \times 9 \\  \qquad\qquad\qquad\qquad\quad  \Rightarrow20 \times 9 \\ \qquad\qquad\qquad\qquad\quad \:  \:  \Rightarrow \color{green}180 {m}^{2}  \:

Now,we will calculate the area of triangle ACD by Heron's Formula .

\sf \therefore  \small\: semi \: perimeter \: (s) =  \frac{1}{2}  \times (28 + 15 + 41) \\  \qquad \Rightarrow  \frac{84}{2}  \\ \qquad \quad \:  \color{violet} \Rightarrow42m  \:  \:  \:

\sf \therefore  \small Area \: of \triangle \: ACD = \sqrt{42(42 - 41)(42 - 28)(42 - 15)}  \\  \qquad  \: \Rightarrow \sqrt{42 \times 1 \times 14 \times 27}  \\ \qquad   \quad\: \:  \Rightarrow \sqrt{3 \times 14 \times 14 \times 3 \times 9}  \\ \qquad \Rightarrow 3 \times 14 \times 3 \qquad  \quad \:    \:  \\  \Rightarrow \color{deeppink} 126m^{2} \quad  \quad \:  \:  \:  \:  \:

\sf \therefore \small Area \: of \: quadrilateral \: ABCD \:  = (126 + 180) \\\qquad  \qquad\qquad  \qquad \qquad \Rightarrow\bold \color{yellow}306 {m}^{2}

Hence :-

The area of Quadrilateral shape park is

306m²

___________________________

Extra information:

  • Perimeter of rectangle =2(l+b)

  • Area of rectangle =lb

  • Perimeter of square = 4a

  • Area of square = a²

  • Area of trapezium =1/2(sum of || sides)(height)

  • Area of parallelogram =Base ×Height

  • Circumference of Circle= 2pie r

where pie =22/7 and r= Radius

€€_______________________€€

hope it helps..... :)

Attachments:
Similar questions