Math, asked by yeduvakayugandh8019, 1 year ago

A park in the shape of a quadrilateral ABCD has angle c=90 degree, AB=9m , BC = 12m , CD=5m and AD =8m . How much area does it occupy

Answers

Answered by vikram991
20

\huge{\bf{\underline{\purple{Answer :}}}}

Given,

→ABCD is a quadrilateral

→AB = 9 m , BC = 12 m , CD = 5 m , AD = 8 m and \bold{\angle C = 90}

To Find :

  • Area of quadrilateral = ?

Solution :

  • Construction : Join BD , its help to quadrilateral divide into two triangle

⇒ In ΔBCD ,

By applying Pythagoras theorem to find Hypotenuse [ BD] :

\implies \bold{BD^{2} = BC^{2} \ + \ CD^{2}}

\implies \bold{BD^{2} = [ 12]^{2} \ + \ [5]^{2}}

\implies \bold{BD^{2} = 169}

\implies \bold{BD = 13 \ m }

So, Now we have Hypotenuse so we find area of ΔBCD :

Area of ΔBCD = \bold{\frac{1}{2} \ x \ 12 \ x \ 5 }

Area of ΔBCD = 30 \bold{m^{2}}

Now , we find the area of ΔABD ,

We have ,

  • a = 13 cm
  • b = 9 cm
  • c = 8 cm

So , we find firstly Semi perimeter :

→Semi perimeter of ΔABD = \bold{\frac{8 \ + \ 9 \ + \ 13 \ }{2}}

Semi perimeter of ΔABD =    \bold{\frac{30}{2}} = \bold{ 15 \ m }

Using Heron's Formula :

Area of ΔABD = \bold{\sqrt{s[s-a] \ [s-b] \ [s-c] }}

Area of ΔABD = \bold{\sqrt{15[15 - 13] \ [15 - 13] \ [15-13] }}

Area of ΔABD = \bold{\sqrt{15 \ x \ 2 \ x \ 6 \ x 7 }}

Area of ΔABD = \bold{\sqrt[6]{35}}

Area of ΔABD = 35.5 \bold{m^{2}}[Approx}

Now, we find Area of Quadrilateral ABCD :

Area of ΔBCD + Area of ΔABD = Area of quadrilateral ABCD

\implies \bold{30 m^{2}} \ + \bold{ 35.5 m^{2}} = \bold{65.5 m^{2}}

So Area of quadrilateral = 65.5 m²................Answer

Answered by Anonymous
60

Answer:

 {\boxed{ \boxed {\sf{65.5 {m}^{2} }}}}

Step-by-step explanation:

Given:

ABCD is a Quadrilateral Park , In which

 \angle \: C = 90 \degree \\    AB \:  = 9m \\ BC = 12m \\ CD = 5m \\ AD = 8m

To Find:

 \sf{area \: occupied \: by \: quadrilateral \: field}

Solution:-

 \sf \red{total \: area \: of \: park =  area \:  \triangle \: ABD \:  +  \triangle \: BCD} \\  \\   \rm{according \: to \: question : } \\  \\  \sf {\green{area \: of \triangle \: BCD}} \\  \\  \rm \green{given \: that \:  \: CD \:  = 5m \: and \: BC = 12m \: and \angle \: C = 90 \degree} \\  \\  \rm \green{ \triangle \: BCD \: is \: right \: angled \: triangle} \\  \\  \rm \green{ \therefore \: area \: of \:  \triangle \: BCD =  \frac{1}{2}  \times base \times  \: height} \\   \rm \green{   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \frac{1}{2}  \times 12 \times 5 {m}^{2}  } \\   \rm \green{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: = 30 {m}^{2}}

 \rm \pink{area \: of \triangle \: ABD} \\  \\  \rm \pink{area \: of \triangle \:  =  \:  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  \rm \pink{s,  \: is \: semi \: perimeter} \\  \rm \pink{ \: and \: also \: a ,  \: b,  \: c \: are \: sides \: of \triangle} \\  \\  \rm \pink{given \: that,  \: } \\  \rm{a = 8m \: , b = 9m \: and \: c = BD} \\  \rm{also \:( c )\: is \: 90 \degree} \\  \\  \rm \pink{by \: applying \: pythagoras \: theorem} \\  \\  \rm{B{D}^{2}  =BC^{2}  + CD^{2} } \\ B {D}^{2}  =  ({12})^{2}  + ( {5})^{2}  \\  BD ^{2}  = 144 + 25 \\ BD ^{2}  = 169 \\ BD =  \sqrt{169 }   \\ BD = 13m

 \rm \pink{c = BD = 13m} \\  \\  \rm{s =  \frac{a + b + c}{2}  =  \frac{8 + 9 + 13}{2}  =  \frac{30}{2}  = 15m}

 \rm \blue{area \: of \triangle \: ABD =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  \rm \blue{putting \: value \: of \: a, = 8m \: b = 9m ,   c  = 13m\: and \: s = 15m} \\  \\  \rm \blue{area \: of \triangle \: ABD =  \sqrt{15(15 - 8)( 15 - 9)(15 - 13 )}}  \\  \rm \blue {   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \sqrt {15 \times 7 \times 6 \times 2} } \\  \:  \:  \:  \:  \rm \blue{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \sqrt{(3 \times 5) \times 7 \times 6 \times 2}}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:   \rm \blue{ = \sqrt{(3 \times 2) \times 6 \times (7 \times 5)}} \\  \rm \blue{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = \sqrt{( {6}^{2}) \times 35 }  } \\   \rm \blue{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: = 6 \sqrt{35}} \\  \rm \blue{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = (6 \times 5.91) {m}^{2} } \\  \rm \blue{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = (35.46) {m}^{2} }

 \rm {\red{ \: area \: of \: park =  \:  area  \: of \: \triangle \: ABD +  \: area \: of \triangle \: BCD \: }} \\  \\  \rm \red { \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 35.46 + 30 {m}^{2} } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \red {\boxed{ = 65.46 {m}^{2} }}

Similar questions