Math, asked by Anonymous, 5 months ago

A park, in the shape of a quadrilateral ABCD, has angle C = 90° l, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy?

[NCERT MATHS CLASS 9TH CH 12 - HERON's FORMULA EX 12.2 Q2]

<marquee>Best Answer will instantly mark as brainliest❤❤❤</marquee>​

Answers

Answered by sethrollins13
68

Given :

  • ∠C = 90°
  • AB = 9 m
  • BC = 12 m
  • CD = 5 m
  • AD = 8 m

To Find :

  • Area of the park .

Solution :

In Δ BCD :

  • Base = 5 m
  • Height = 12 m
  • Hypotenuse = ?

By Pythagorus Theorem :

\longmapsto\tt{{(H)}^{2}={(B)}^{2}+{(P)}^{2}}

\longmapsto\tt{{(H)}^{2}={(5)}^{2}+{(12)}^{2}}

\longmapsto\tt{{(H)}^{2}=25+144}

\longmapsto\tt{{(H)}^{2}=169}

\longmapsto\tt{H=\sqrt{169}}

\longmapsto\tt\bf{H=13\:m}

Now ,

  • a = 5 m
  • b = 12 m
  • c = 13 m

\longmapsto\tt{s=\dfrac{a+b+c}{2}}

\longmapsto\tt{s=\dfrac{5+12+13}{2}}

\longmapsto\tt{s=\cancel\dfrac{30}{2}}

\longmapsto\tt\bf{s=15\:m}

\longmapsto\tt{Area=\sqrt{s(s-a)(s-b)(s-c)}}

\longmapsto\tt{\sqrt{15(15-5)\:(15-12)\:(15-13)}}

\longmapsto\tt{\sqrt{15\:(10)\:(2)\:(2)}}

\longmapsto\tt{5\times{3}\times{2}}

\longmapsto\tt\bf{30\:{m}^{2}}

Area of Δ BCD is 30 m² .

Similarly ,

In Δ ABD :

  • a = 9 m
  • b = 8 m
  • c = 13 m

\longmapsto\tt{s=\dfrac{a+b+c}{2}}

\longmapsto\tt{s=\dfrac{9+8+13}{2}}

\longmapsto\tt{s=\cancel\dfrac{30}{2}}

\longmapsto\tt\bf{s=15\:m}

\longmapsto\tt{Area=\sqrt{s(s-a)(s-b)(s-c)}}

\longmapsto\tt{\sqrt{15(15-8)\:(15-9)\:(15-13)}}

\longmapsto\tt{\sqrt{15\:(7)\:(6)\:(2)}}

\longmapsto\tt{3\times{2}\sqrt{5\times{7}}}

\longmapsto\tt\bf{6\sqrt{35}\:{m}^{2}}

Area of Δ ABD is 30 m² .

Total Area of Park :

\longmapsto\tt{Area\:of\:\triangle\:BCD+Area\:of\:\triangle\:ABD}

\longmapsto\tt{30+6\sqrt{35}}

\longmapsto\tt\bf{65.4\:{m}^{2}}

So , The Area Occupied by the park is 65.4 m² ..

Attachments:
Answered by kushmita07
24

Answer:

Hey!!....Wise u a very happy birthday dear.......

Similar questions