Physics, asked by Leelauree, 10 months ago

A particle A is moving along x-axis at time t-0, it has velocity of 10m/s and acceleration -4m/s2.Particle B has velocity of 20m/s and acceleration -2m/s2.Initially both particles are at the origin. At time t-2s, distance between the two particles is-
A) 20m. B) 24m
C) 36m. D) 42m


Anonymous: gooddd

Answers

Answered by BrainlyConqueror0901
22

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Seperation\:between\:two\:particles=24\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Initial \: velocity(u_{1}) = 10 \: m/s \\  \\  \tt:\implies Acceleration( a_{1}) =  - 4 \: m/{s}^{2}  \\  \\ \tt: \implies Initial \: velocity(u_{2}) = 20 \: m/s \\  \\ \tt:\implies Acceleration( a_{2}) =  - 2\: m/{s}^{2} \\  \\  \tt:  \implies Time (t) = 2 \: sec \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Distance \: between \: them =?

• According to given question :

 \bold{For \: particle \: A: } \\  \tt:  \implies  s_{1}  =  u_{1}t +  \frac{1}{2}  { a_{1}t}^{2}  \\  \\ \tt:  \implies  s_{1}  =10 \times 2 +  \frac{1}{2}  \times ( - 4) \times  {2}^{2}  \\  \\ \tt:  \implies  s_{1}  =20 - 8 \\  \\  \green{\tt:  \implies  s_{1}  =12 \: m} \\  \\  \bold{For \: particle \: B : } \\ \tt:  \implies  s_{2}  = u_{2}t +  \frac{1}{2}  { a_{2}t}^{2}  \\  \\ \tt:  \implies  s_{2}  =20 \times 2 +  \frac{1}{2} ( - 2)  \times  {2}^{2}  \\  \\ \tt:  \implies  s_{2}  =40 - 4 \\  \\  \green{\tt:  \implies  s_{2}  =36 \: m} \\  \\  \bold{For \:Distance \: between \: them : } \\ \tt:  \implies  s= s_{2} - s_{1} \\  \\ \tt:  \implies  s=36 - 12 \\  \\  \green{\tt:  \implies  s=24  \: m}


BrainlyConqueror0901: thnx bhai : )
BrainlyConqueror0901: शुक्रिया
Anonymous: very niceeeee
BrainlyConqueror0901: thnx : )
Anonymous: awesome explaination
BrainlyConqueror0901: thnx : )
AlluringNightingale: Awesome
BrainlyConqueror0901: thnx : )
Anonymous: welcome bhaiya
Answered by AdorableMe
67

GIVEN :-

◙ Initial velocity of particle A (u) = 10 m/s

◙ Acceleration of particle A (a) = -4 m/s²

◙ Initial velocity of particle B (u') = 20 m/s

◙ Acceleration of particle B (a') = -2 m/s²

◙ Time(t) = 2 s

TO FIND :-

The distance between the particles.

FORMULA TO BE USED :-

\sf{s=ut+\dfrac{1}{2}at^2}

SOLUTION :-

For particle A,

\sf{s=ut+\dfrac{1}{2}at^2 }\\\\\sf{\implies s=10(2)+\dfrac{1}{2}\times (-4)(2)^2 }\\\\\sf{\implies s=20+\dfrac{-16}{2} }\\\\\sf{\implies s=20-8}\\\\\boxed{\sf{\implies s=12\ m}}

\rule{200}{2}

For particle B,

\sf{\implies s'=u't+\dfrac{1}{2}a't^2}\\\\\sf{\implies s'=20(2)+\dfrac{1}{2}\times (-2)(2)^2 }\\\\\sf{\implies s'=40+(-4)}\\\\\boxed{\sf{\implies s'=36\ m}}

Now, distance between particle A and particle B = s' - s

⇒Distance between particle A and particle B = 36 - 12

⇒Distance between particle A and particle B = 24 m

Therefore, the answer is (B) 24 m.


Anonymous: Awesome! :D
BrainlyConqueror0901: fantastic bro : )
AlluringNightingale: Awesome
pandaXop: Good
Similar questions