Physics, asked by deepalibag604, 1 month ago

A particle A of mass 1 g moving with a speed 2 cm/s collides with an identical particle B at rest. If coefficient of restitution is 0.5 then the ratio of velocity of A and B will be​

Answers

Answered by Divyansh50800850
8

\sf\large\bold{\underline{\pink{Given :-}}}

Mass of Particle A \sf{(m_{1})  = 1\:g}

Mass of Particle B \sf{(m_{2})  = 1\:g}

Initial Velocity of Particle A \sf{(u_{1}) = 2\:cm/s}

Initial Velocity of Particle B \sf{(u_{2}) = 0}

Since Particles are identical that's why \sf{m_{1} = m_{2}}

\sf\large\bold{\underline{\pink{To\: Find :-}}}

\sf{\dfrac{Final\: Velocity\:of\:A}{Final\: Velocity\:of\:B} = \dfrac{v_{1}}{v_{2}}}

\sf\large\bold{\underline{\pink{Solution :-}}}

\sf\bold{\underline{\blue{Using\: Momentum\: Conservation}}}

\sf\bold\green{m_{1}u_{1} + m_{2}u_{2} = m_{1}v_{1} + m_{2}v_{2}}

\sf{1×2 + 1×0 = 1×v_{1} + 1×v_{2}}

\sf{2 + 0 = v_{1} + v_{2}}

\sf\bold\orange{v_{1} + v_{2} = 2} •••• (i)

\sf\bold{\underline{\pink{Now,}}}

\sf{Coefficient\: of\: Restitution = 0.5 = \dfrac{1}{2}}

\sf{e = \dfrac{v_{2} - v_{1}}{u_{1} - u_{2}}}

\sf{\dfrac{1}{2} = \dfrac{v_{2} - v_{1}}{2 - 0}}

\sf\bold\orange{v_{1} - v_{2} = 1} •••• (ii)

Solving equation (i) and (ii)

\sf\bold\green{v_{1} = 0.5}

\sf\bold\green{v_{2} = 1.5}

\sf\bold\blue{Ratio = \dfrac{v_{1}}{v_{2}} = \dfrac{0.5}{1.5} = \dfrac{1}{3}}

Answered by KaurSukhvir
0

Answer:

The ratio of final velocity of A and B after collision is equal to 1/3.

Explanation:

Given:

The mass of body A, m_{1}=1g

The mass of body B, m_{2}=1g

Before the collision:

The velocity of body A, u_{1}=2cms^{-1}

The velocity of body B, u_{2}=0

After the collision:

The velocity of body A  and  body B are  v_{1}  and v_{2} respectively.

From the law of conservation of momentum:

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}

(1)(2)+(1)(0)=(1)v_{1}+(1)v_{2}

v_{1}+v_{2}=2                                                                  ...................(1)

The restitution coefficient = velocity of separation/ velocity of approach

e=\frac{v_{2}-v_{1}}{u_{1}-u_{2}}

0.5=\frac{v_{2}-v_{1}}{2-0}

v_{2}-v_{1}=1

v_{2}=1+v_{1

Put the value of v₁ in eq.(1);

v_{1}+1+v_{1}=2\\2v_{1}=1\\

v_{1}=\frac{1}{2}

and, v_{2}=1+\frac{1}{2}

        v_{2}=\frac{3}{2}                                                

The ratio of   \frac{v_{1}}{v_{2}} =\frac{1}{2}*\frac{2}{3}

Therefore,    \frac{v_{1}}{v_{2}}=\frac{1}{3}

Similar questions