Physics, asked by ramlakshman126, 6 hours ago

A particle accelerates uniformly with a rate 10 m/s2 and then starts decelerating with a rate of 5 m/s2, if the total time of journey is 10 s, then the maximum velocity attained by it, is 10 3 m/s 30 m/s 3 100 m/s 3 40 m/s​

Answers

Answered by sakshipriya2503
0

Solution

verified

Verified by Toppr

Initial velocity u=30 km/h=30×

18

5

=

3

25

m/s

Final velocity v=60 km/h=60×

18

5

=

3

50

m/s

Mass m=1500 kg

Work done W=

2

1

mv

2

2

1

mu

2

⟹ W=

2

m

(v

2

−u

2

)=

2

1500

×((

3

50

)

2

−(

3

25

)

2

)=156187 J

Answered by AnkitaSahni
0

Given: Initial rate of acceleration = 10 m/s²

           Rate of deceleration = 5 m/s²

           Total time of journey = 10 s

To Find : Maximum velocity attained by particle

Solution:

  • For solving this question we will make use of the following formula:

                              v = u + at

Where,     v is final velocity of particle

               u is initial velocity of particle

               a is acceleration

        and t is time taken

  • Here, we will make two equations:
  1. for time t_{1}, when particle accelerates
  2. for time t_{2}, when particle decelerates

  • In the first equation, we assume the case that particle starts from rest and attains maximum velocity in time t_{1}.

                                  v_{max} = 0 + 10t_{1}

                              ⇒ v_{max} = 10t_{1}                           (1)

  • In the second equation, we assume particle starts decelerating from its maximum velocity and comes to a stop in time t_{2}.

                              0 = v_{max} - 5t_{2}                    

                               ⇒ v_{max} = 5t_{2}                          (2)

              Equating (1) and (2) we get

                                10 t_{1} = 5t_{2}

                             ⇒   2t_{1}= t_{2}                                       (3)

  • We also know that total time = t_{1} + t_{2} = 10 s

                         Substituting values from (3)

                                    t_{1} + 2t_{1} = 10

                              ⇒ 3t_{1} = 10

                              ⇒ t_{1} = \frac{10}{3} s                           (4)

  • Substituting value of t_{1} in (1) we get:

                       v_{max} = 10 × \frac{10}{3} = \frac{100}{3} m/s

Therefore, maximum velocity attained by particle is \frac{100}{3} m/s.

Similar questions