Physics, asked by muskanchhapariya2002, 8 months ago

a particle executes 4 revolutions per second on a circular path of radius 0.25 meter. find centripetal acceleration of the particle​

Answers

Answered by Swetakumar6789
0

Explanation:

Frequency of rotation

n

=

2

r

p

s

Angular velocity of the rotating particle

ω

=

2

π

n

=

4

π

rad/s

Radius of the circular path

r

=

25

cm.

So radial acceleration of the particle

a

radial

=

ω

2

r

=

(

4

π

)

2

25

=

400

π

2

c

m

s

2

=

4

π

2

39.48

m

s

2

Answered by nirman95
1

Given:

A particle executes 4 revolutions per second on a circular path of radius 0.25 meter.

To find:

Centripetal acceleration of the object.

Calculation:

Let speed of object be v ;

 \rm{ \therefore \: v =  \dfrac{distance}{time} }

 \rm{  =  >  \: v =  \dfrac{4 \times 2\pi r}{t} }

 \rm{  =  >  \: v =  \dfrac{8\pi r}{t} }

 \rm{  =  >  \: v =  \dfrac{8\pi (0.25)}{1} }

 \rm{  =  >  \: v =  \dfrac{8\pi ( \frac{1}{4} )}{1} }

 \rm{  =  >  \: v =  2\pi \: m {s}^{ - 1} }

Now , centripetal acceleration will be:

 \rm{ \therefore \: a =  \dfrac{ {v}^{2} }{r} }

 \rm{  =  >  \: a =  \dfrac{ {(2\pi)}^{2} }{0.25} }

 \rm{  =  >  \: a =  \dfrac{ 4 {\pi}^{2}  }{( \frac{1}{4} )} }

 \rm{ =  >  \: a = 16 {\pi}^{2} \:   m {s}^{ - 2} }

So, final answer is:

 \boxed{ \bf{ \: a = 16 {\pi}^{2} \:   m {s}^{ - 2} }}

Similar questions