a particle executes S.H.M of period 12s and of amplitude 8cm.what time will it take to travel 4cm from the extreme point?
Answers
Answer:
X=Acosωt
X=Acosωt5=8cosωt
X=Acosωt5=8cosωtωt=cos
X=Acosωt5=8cosωtωt=cos −1
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t=
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 =
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 =
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 = 2π
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 = 2π9T
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 = 2π9T
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 = 2π9T =
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 = 2π9T = 2π
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 = 2π9T = 2π0.9×1.2
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 = 2π9T = 2π0.9×1.2
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 = 2π9T = 2π0.9×1.2
X=Acosωt5=8cosωtωt=cos −1 (5/8)=0.9∴ t= ω0.9 = (2π/T)0.9 = 2π9T = 2π0.9×1.2 =0.17 s