Physics, asked by naviarora3517, 1 year ago

A particle falling under gravity falls 20 m in a certain second find the time required to cover that next 20 metres

Answers

Answered by shadowsabers03
12

Let \sf{g=10\ m\,s^{-2}.}

The particle covers a distance of 20 metres in a certain second (t = 1 s). So by second equation of motion,

\displaystyle\longrightarrow\sf{s=ut+\dfrac{1}{2}\,at^2}

\displaystyle\longrightarrow\sf{20=u\times1+\dfrac{1}{2}\times10\times1^2}

\displaystyle\longrightarrow\sf{20=u+5}

\displaystyle\longrightarrow\sf{u=15\ m\,s^{-1}}

After travelling this 20 metres for 1 second, the velocity of this particle will be, by first equation of motion,

\displaystyle\longrightarrow\sf{v=u+at}

\displaystyle\longrightarrow\sf{v=15+10\times1}

\displaystyle\longrightarrow\sf{v=15+10}

\displaystyle\longrightarrow\sf{v=25\ m\,s^{-1}}

This is the initial velocity when the particle covers the next 20 metres.

Hence the time for covering this 20 metres is given by the second equation of motion as \sf{(u=25\ m\,s^{-1}),}

\displaystyle\longrightarrow\sf{s=ut+\dfrac{1}{2}\,at^2}

\displaystyle\longrightarrow\sf{20=25t+\dfrac{1}{2}\times10t^2}

\displaystyle\longrightarrow\sf{20=25t+5t^2}

\displaystyle\longrightarrow\sf{5t^2+25t-20=0}

\displaystyle\longrightarrow\sf{t^2+5t-4=0}

Since \sf{t\geq 0,}

\displaystyle\longrightarrow\sf{t=\dfrac{-5+\sqrt{5^2-4\times1\times-4}}{2\times1}}

\displaystyle\longrightarrow\sf{t=\dfrac{\sqrt{41}-5}{2}\ s}

\displaystyle\longrightarrow\sf{\underline{\underline{t=0.702\ s}}}

Similar questions