Physics, asked by HARSH04052004, 1 year ago

A particle falls on earth :
(i) from infinity, (ii) from a height 10 times the radius
of earth. The ratio of the velocities gained on
reaching at the earth's surface is :
(1) V11:V10 (2) V10: V11(V means root)
(3) 10:11
(4) 11 : 10​

Answers

Answered by AadilPradhan
10

Soltuion : So option 1 is correct v_{1}: v_{2} = \sqrt{11} : \sqrt{10}

By using formula

T.E=K.E +P.E =\frac{1}{2} mv^{2} + ( - \frac{GMm}{r} )

So at the surface of the earth

T.E=\frac{1}{2} mv^{2} + ( - \frac{GMm}{R}

Here V = Velocity attained by the particle at surface.

So for Case 1 : From infinity

=> T.E at infinity is zero .

Now ,Apply the Formula of Conservation of energy -

0=\frac{1}{2} mv_{1} ^{2} + ( - \frac{GMm}{R} )

=> v1 = \sqrt{\frac{2Gm}{R} }

ii) So For Case 2 :

At h= 10 R

T.E_{H}= 0+ ( - \frac{GMm}{11R} )

( asr=h + R   =11 R )

Now Apply conservation of energy:-

 ( - \frac{GMm}{11R} ) =\frac{1}{2} m_{2} ^{2} +(- \frac{GMm}{R} )

=> v^{2} = \sqrt{\frac{10}{11}\frac{2GM}{R}}

Therefore , v_{1}: v_{2} = \sqrt{11} : \sqrt{10}

Similar questions
Math, 1 year ago