Physics, asked by laxmipriyasahu758, 6 months ago

A particle in SHM has amplitude 'A' and time
period T. How much time it will take to travel
from x = A to x = A/2

Answers

Answered by Anonymous
16

Answer:

  • T/6 time it will take to travel from x = A to x = A/2.

Explanation:

Given that,

  • A particle in Simple harmonic motion (SHM) has amplitude 'A' and time period 'T'.

According to Question,

 \sf \red{ For  \:  \: SHM, } \: x = Asin(\frac{2π}{T}.t)

[ At x = A ]

 \leadsto \sf \: A = Asin(\frac{2π}{T}.t) \\  \\  \leadsto \sf \: sin( \frac{2 \pi }{T} .t) =  \frac{A}{A}  \\  \\  \leadsto \sf \:  sin( \frac{2 \pi }{T} .t) =1 \\  \\  \leadsto \sf \: sin( \frac{2 \pi }{T} .t)  = sin( \frac{ \pi}{2} ) \\  \\  \leadsto \sf t =  \frac{T}{4} \: \red \bigstar

[ At x = A/2 ]

\leadsto \sf \:  \frac{A}{2} = Asin(\frac{2π}{T}.t)  \\  \\  \leadsto \sf \: sin \frac{\pi}{6}  = sin( \frac{2\pi}{T} .t) \\  \\  \leadsto \sf \: t  =  \frac{T}{12}  \:  \green \bigstar

 \sf \:  \underline{Now, }  \\  \\  \sf\leadsto Time \:  taken  \: to \:  travel  \: from  \: x = A \:  to \:  x = \frac{A}{2}. \\  \\  \leadsto \sf  \: \frac{T}{4} - \frac{T}{12}  \\  \\  \leadsto \sf \:  \frac{3 \times T }{4 \times 3}  -  \frac{T}{12}  \\  \\  \leadsto \sf \:  \frac{3T}{12}  -  \frac{T}{12}  \\  \\  \leadsto \sf \:  \frac{3T -T }{12}  \\   \\ \leadsto \sf \:  \frac{2T}{12}  \\  \\  \leadsto \sf \:  \frac{T}{6}  \:  \:   \purple\bigstar

Similar questions