A particle inside a hollow sphere of radius r with coefficient of friction
Answers
Answered by
0
Answer:The height is 0.134 r.
Explanation:
Given that,
Coefficient of friction \mu= \dfrac{1}{\sqrt{3}}μ=31
Radius = r
According to figure,
Cos\ \theta= \dfrac{r-h}{r}Cos θ=rr−h .....(I)
Equivalent force is
F_{f}= \mu mg cos\thetaFf=μmgcosθ .....(II)
F= mg sin\thetaF=mgsinθ ......(III)
Now, F_{f}=FFf=F
\mu\ mg cos\theta = mg sin\thetaμ mgcosθ=mgsinθ
\dfrac{1}{\sqrt{3}}= tan\theta31=tanθ
\theta = 30^{0}θ=300
Now, from equation (I)
cos\theta = \dfrac{r-h}{r}cosθ=rr−h
cos 30^{0}=\dfrac{r-h}{r}cos300=rr−h
\dfrac{\sqrt{3}}{2}= \dfrac{r-h}{r}23=rr−h
h = \dfrac{(2-\sqrt{3})r}{2}h=2(2−3)r
h = 0.134\ rh=0.134 r
Hence, The height is 0.134 r.
HOPE IT HELP YOU.
Explanation:
Given that,
Coefficient of friction \mu= \dfrac{1}{\sqrt{3}}μ=31
Radius = r
According to figure,
Cos\ \theta= \dfrac{r-h}{r}Cos θ=rr−h .....(I)
Equivalent force is
F_{f}= \mu mg cos\thetaFf=μmgcosθ .....(II)
F= mg sin\thetaF=mgsinθ ......(III)
Now, F_{f}=FFf=F
\mu\ mg cos\theta = mg sin\thetaμ mgcosθ=mgsinθ
\dfrac{1}{\sqrt{3}}= tan\theta31=tanθ
\theta = 30^{0}θ=300
Now, from equation (I)
cos\theta = \dfrac{r-h}{r}cosθ=rr−h
cos 30^{0}=\dfrac{r-h}{r}cos300=rr−h
\dfrac{\sqrt{3}}{2}= \dfrac{r-h}{r}23=rr−h
h = \dfrac{(2-\sqrt{3})r}{2}h=2(2−3)r
h = 0.134\ rh=0.134 r
Hence, The height is 0.134 r.
HOPE IT HELP YOU.
Attachments:
![](https://hi-static.z-dn.net/files/d09/8ab099440dd70998b3e96a97908bc1ea.jpg)
Similar questions