Physics, asked by galkudevi320, 11 months ago

A particle is dropped from the tower.In the last one second of motion, the particle determines the height of the tower as 9/25 then find the height of the tower?

Answers

Answered by shabaz1031
29

\huge{\sf{\boxed{\boxed{ANSWER}}}}

Explanation:

THE HEIGHT OF TOWER CAN BE DETERMINED BY FOLLOWING STEPS:

Let the height of tower be 'h' .

During the last 1 sec it covers 9h/25 height.

we have the equation :

S=ut +1/2at²  (since the body is falling from a height a=g,u=0)

9h/25 = 0 +1/2*10*1²

9h=5*25

h=125/9

h=13.89 m

Answered by Anonymous
125

AnswEr :

⋆ In last second(say t second) it travel 9/25 of the tower height(say h metre) i.e. 9h/25 metre

⋆ So body travel (h - 9h/25) = 16h/25 metre in (t -1) second and h metre in t second.

Now with the Formula :

 \rightarrow\mathsf{h =  \dfrac{1}{2}   \: g {t}^{2}  }⠀⠀ —(¡)

  \rightarrow\mathsf{\dfrac{16h}{25} =  \dfrac{1}{2}  \: g {(t - 1)}^{2}  }⠀⠀ —(¡¡)

Putting the Value of h in (¡¡)

  \rightarrow\mathsf{\dfrac{16}{25}  \times   \cancel{\dfrac{1}{2}g} \:  {t}^{2} =  \cancel{\dfrac{1}{2} g} \:  {(t - 1)}^{2} }

 \rightarrow\mathsf{ \dfrac{16 {t}^{2} }{25} =  {(t - 1)}^{2}  }

 \rightarrow\mathsf{16 {t}^{2}  = 25( {t}^{2} + 1 - 2t) }

\rightarrow\mathsf{16 {t}^{2} = 25 {t}^{2}  + 25 - 50t }

\rightarrow\mathsf{9 {t}^{2} - 50t + 25 = 0 }

\rightarrow\mathsf{9 {t}^{2} - 45t - 5t + 25 = 0 }

\rightarrow\mathsf{9t(t - 5) - 5(t - 5) = 0}

\rightarrow\mathsf{(9t - 5)(t - 5) = 0}

\rightarrow\mathsf{t =  \dfrac{5}{9} \:  \: or \:  \: t = 5 }

━━━━━━━━━━━━━━━━━━━━━━━━

Particle Total Distance Travelled in 5 sec.

 \longrightarrow\mathsf{h =  \dfrac{1}{2}   \: g {t}^{2} }

 \longrightarrow\mathsf{h =  \dfrac{1}{ \cancel2}   \times   \cancel{10}  \times {(5)}^{2}  }

 \longrightarrow\mathsf{h = 5 \times 25}

 \longrightarrow\large\mathsf{h =125 \: m}

 \large\therefore Height of the Tower is 125 m.

Similar questions