Physics, asked by iqrafathima9753, 11 days ago

a particle is moves as per the equation v=a√x where a is constant and x is displacement find average velocity in the first s meters of the path​

Answers

Answered by Sayantana
0

we know that , a = v(dv/dx)

\implies \rm v = a\sqrt{x}

\implies \rm v = v.\dfrac{dv}{dx}\sqrt{x}

\implies \rm 1 = \dfrac{dv}{dx}\sqrt{x}

\implies \rm dv = (x)^{\dfrac{-1}{2}} dx

\implies\rm \displaystyle \int dv = \displaystyle\int \dfrac{(x)^\dfrac{-1}{2}-1}{\dfrac{1}{2}}

\implies\rm\displaystyle \int_0^v dv = 2\displaystyle \int_0^s\sqrt{x}

\implies \bf v = 2\sqrt{s}

-------------

Attachments:
Answered by MuskanJoshi14
1

Explanation:

we know that , a = v(dv/dx)

\implies \rm v = a\sqrt{x}

\implies \rm v = v.\dfrac{dv}{dx}\sqrt{x}

\implies \rm 1 = \dfrac{dv}{dx}\sqrt{x}

\implies \rm dv = (x)^{\dfrac{-1}{2}} dx

\implies\rm \displaystyle \int dv = \displaystyle\int \dfrac{(x)^\dfrac{-1}{2}-1}{\dfrac{1}{2}}

\implies\rm\displaystyle \int_0^v dv = 2\displaystyle \int_0^s\sqrt{x}

\implies \bf v = 2\sqrt{s}

-------------

Similar questions