Physics, asked by sahin51, 1 year ago

A particle is moving along a straight line with constant acceleration 4 metre per second square what will be its velocity and displacement at equals to 2 second if its initial velocity is 3 metre per second and initial displacement is 6 metre​

Answers

Answered by skh2
23

Initial Velocity = 3 m/sec

Initial Displacement = 6 m

Acceleration = 4 m/sec^2

\rule{200}{2}

The acceleration is constant.

Time = 2 second.

\rule{200}{2}

We have time,initial velocity and acceleration.

Applying 2nd Equation of motion:-

s=ut+\dfrac{1}{2}at^2\\ \\ \\s=3*2+\dfrac{1}{2}4*4\\ \\ \\s=6+8\\ \\ \\s=14 m

\rule{200}{2}

Hence:-

Total Displacement will be 14+6 = 20 m

\rule{200}{2}

From 1st Equation of Motion :-

a=\dfrac{v-u}{t}\\ \\ \\a=\dfrac{v-3}{2}\\ \\ \\v-3=8\\ \\ \\v=8+3\\ \\ \\v=11\:m/sec

\rule{200}{2}

Answered by Anonymous
15

Motion in a Straight Line :

Given, Acceleration, a = \mathsf{4 \:m{s}^{-2}}

Time, t = \mathsf{2\:s}

Initial velocity, u = \mathsf{3 \:m{s}^{-1}}

Initial displacement,  \mathsf{s_1} = \mathsf{6\:m}

Since, Final velocity is not given. So, we have only one choice to use "Newton's 2nd Equation of Motion".

\boxed{\mathsf{\green{s\:=\:ut\:+\:{\dfrac{1}{2}\:*\:a{t}^{2}}}}}

s = \mathsf{ 3*2\:+\:{\dfrac{1}{2}\:*\:4*{2}^{2}}}

s = \mathsf{6\:+\:8}

 \boxed{\mathsf{\green{Displacement,s\:=\:14 m.}}}

Now, Total displacement =  \mathsf{s\:+\:s_1} = \mathsf{14\:+\:6\:=\:20\:m}

Using formula of Acceleration,

\boxed{\mathsf{\green{a\:=\:{\dfrac{v\:-\:u}{t}}}}}

\mathsf{4\:=\:{\dfrac{v\:-\:3}{2}}}

\mathsf{8\:=\:v\:-\:3}

\mathsf{v\:=\:8\:+\:3}

\mathsf{v\:=\:11\:m{s}^{-1}}

 \boxed{\mathsf{\green{Final\:velocity,v\:=\:11\: m{s}^{-1}}}}

Similar questions