Physics, asked by naeemofficial2471, 10 months ago

A particle is moving along x-axis so that its velocity is given as v=(x^2+x+4) m/s, where x is in m. the acceleration of the particle at x=1.5m is

Answers

Answered by Anonymous
9

GiveN :

  • Velocity of a particle is given as, \sf{v\ =\ ( x^2\ +\ x\ +\ 4\ )\ ms^{-1}}

To FinD :

  • Acceleration of particle at x = 1.5 m

SolutioN :

Use Differentiation for calculating acceleration of particle :

\implies \sf{a\ =\ v \dfrac{dv}{dx}} \\ \\ \\ \implies \sf{a\ =\ (x^2\ +\ x\ +\ 4) \dfrac{d(x^2\ +\ x\ +4)}{dx}} \\ \\ \\ \implies \sf{a\ =\ (x^2\ +\ x\ +\ 4) \: \times \: \big[ 2(x)\ +\ 1\ +\ 0 \big] } \\ \\ \\ \implies \sf{a\ =\ (x^2\ +\ x\ +\ 1) \: \times \: (2x\ +\ 1)} \\ \\ \\ \longrightarrow \underline{\boxed{\sf{Acceleration\ =\ (x^2\: +\ x\ +\ 1) \: \times \: (2x\ +\ 1)\ ms^{-2}}}} \\

_______________________

Put x = 1.5 m

 \\  \implies \sf{a\ =\ \big[ (1.5)^2\ +\ 1.5\ +\ 4 \big] \: \times \: \big[ 2(1.5)\ +\ 1 \big]} \\ \\ \\ \implies \sf{a\ =\ (2.25\ +\ 1.5\ +\ 4) \: \times \: (3\ +\ 1)} \\ \\ \\ \implies \sf{a\ =\  7.75 \: \times \: (4)} \\ \\ \\ \implies \sf{a\ =\ 11.75} \\ \\ \\ \longrightarrow \underline{\boxed{\sf{Acceleration\ (a)\ =\ 11.75 ms^{-2}}}}

Similar questions