Chemistry, asked by Futz, 9 months ago

A particle is moving along X-direction. The formula of its displacement is x= 2t2 – 4t+9. Find out its velocity

and acceleration.

(A) (4t – 4), 4 (B) (2t – 4), 4 (C) t, 4 (D) t/2, 4​

Answers

Answered by ItzAditt007
13

Answer:-

The Correct Answer Is Option A) (4t - 4), 4.

Explanation:-

Given:-

  • Displacement of the particle \tt= 2t^2-4t+9.

To Find:-

  • Velocity and Acceleration of the particle.

IDs Used:-

   \\ \large\bf 1. \:  \:  \:   \dfrac{d}{dx} x {}^{n}   = nx {}^{n - 1}.

 \large \bf2. \:  \:  \:   \dfrac{d}{dx} y = 0. \:  \:   \tiny\textrm(if \: y \: is \: not \:depend \: on \: x).

 \\  \large \bf 3. \:  \:  \: v =  \frac{d}{dx}  \: s. \\   \\   \tiny\bf where \:  \:  \begin{array}{|c c c|} \bf v & \bf = & \bf Velocity \\ \\ \bf s & \bf = & \bf Displacement \end{array} \:

 \\  \large \bf 3. \:  \:  \: a =  \frac{d}{dx}  \: v. \\   \\   \tiny\bf where \:  \:  \begin{array}{|c c c|} \bf a & \bf = & \bf acceleration \\ \\ \bf v & \bf = & \bf velocity \end{array} \:

So Here,

  • s = 2t² - 4t + 9.

So Velocity,

 \\  \tt =  \dfrac{d}{dt}  \bigg(2{t}^{2}  - 4t + 9 \bigg).

\\  \tt = 2 \:  \frac{d}{dt}  ( {t}^{2}) - 4 \:  \frac{d}{dt} (t) +  \frac{d}{dt} (9).

\\  \tt = 2 \times 2t {}^{2 - 1}  - 4 \times 1t {}^{1 - 1}  + 0.

\\  \tt = (2 \times 2t) - (4 \times 1)+ 0.

\\   \large\bf = 4t  -  4 \:  m/s.

Therefore The Velocity is 4t - 4.

Similarly Acceleration,

\\  \tt =  \frac{d}{dx} v.

\\  \tt =  \frac{d}{dt} \bigg(4t - 4 \bigg).

\\  \tt =   \frac{d}{dt} (4t) -  \frac{d}{dt} (4).

\\  \tt = 4 \times 1t {}^{1 - 1}  + 0 .

\\  \large \bf = 4m / {s}^{2} .

Therefore The Velocity And Acceleration Of The Particle Is 4t - 4 m/s and 4 m/s² Respectively.

Similar questions