A particle is moving at a constant speed V from a large distance towards a concave mirror of radius R along its principal axis. Find the speed of the image formed by the mirror as a function of the distance x of the particle from the mirror.
Answers
Answered by
2
Given,:
Radius of the concave mirror = R
f=R/2
Velocity of the particle,
V=dx/dt
Object distance, u = −x
Using mirror equation,
1/v+1/u=1/f
On substituting the values we get,
1/v+1/-x= -2/R
1/v= -2/R+1/x =R-2x/Rx
V=Rx/(R-2x)
Velocity of the image is given by V1
V1=dv/dt=d/dt [Rx/(R-2x)
=d/ dt [ Rx/( R-2x) ] - d/dt [(R-2x)Rx] /( R-2x)²
=R [ (dx/ dt) (R-2x) ] - 2(dx/dt)x / ( R-2x)²
=R[V (R-2x) -[2V×0] / (R-2x)²
=VR²/(2x-R)²
Answered by
0
ʀᴀᴅɪᴜs ᴏғ ᴛʜᴇ ᴄᴏɴᴄᴀᴠᴇ ᴍɪʀʀᴏʀ = ʀ
ғ=ʀ/2
ᴠᴇʟᴏᴄɪᴛʏ ᴏғ ᴛʜᴇ ᴘᴀʀᴛɪᴄʟᴇ,
ᴠ=ᴅx/ᴅᴛ
ᴏʙᴊᴇᴄᴛ ᴅɪsᴛᴀɴᴄᴇ, ᴜ = −x
ᴜsɪɴɢ ᴍɪʀʀᴏʀ ᴇǫᴜᴀᴛɪᴏɴ,
1/ᴠ+1/ᴜ=1/ғ
ᴏɴ sᴜʙsᴛɪᴛᴜᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇs ᴡᴇ ɢᴇᴛ,
1/ᴠ+1/-x= -2/ʀ
1/ᴠ= -2/ʀ+1/x =ʀ-2x/ʀx
ᴠ=ʀx/(ʀ-2x)
ᴠᴇʟᴏᴄɪᴛʏ ᴏғ ᴛʜᴇ ɪᴍᴀɢᴇ ɪs ɢɪᴠᴇɴ ʙʏ ᴠ1
ᴠ1=ᴅᴠ/ᴅᴛ=ᴅ/ᴅᴛ [ʀx/(ʀ-2x)
=ᴅ/ ᴅᴛ [ ʀx/( ʀ-2x) ] - ᴅ/ᴅᴛ [(ʀ-2x)ʀx] /( ʀ-2x)²
=ʀ [ (ᴅx/ ᴅᴛ) (ʀ-2x) ] - 2(ᴅx/ᴅᴛ)x / ( ʀ-2x)²
=ʀ[ᴠ (ʀ-2x) -[2ᴠ×0] / (ʀ-2x)²
=ᴠʀ²/(2x-ʀ)²
ғ=ʀ/2
ᴠᴇʟᴏᴄɪᴛʏ ᴏғ ᴛʜᴇ ᴘᴀʀᴛɪᴄʟᴇ,
ᴠ=ᴅx/ᴅᴛ
ᴏʙᴊᴇᴄᴛ ᴅɪsᴛᴀɴᴄᴇ, ᴜ = −x
ᴜsɪɴɢ ᴍɪʀʀᴏʀ ᴇǫᴜᴀᴛɪᴏɴ,
1/ᴠ+1/ᴜ=1/ғ
ᴏɴ sᴜʙsᴛɪᴛᴜᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇs ᴡᴇ ɢᴇᴛ,
1/ᴠ+1/-x= -2/ʀ
1/ᴠ= -2/ʀ+1/x =ʀ-2x/ʀx
ᴠ=ʀx/(ʀ-2x)
ᴠᴇʟᴏᴄɪᴛʏ ᴏғ ᴛʜᴇ ɪᴍᴀɢᴇ ɪs ɢɪᴠᴇɴ ʙʏ ᴠ1
ᴠ1=ᴅᴠ/ᴅᴛ=ᴅ/ᴅᴛ [ʀx/(ʀ-2x)
=ᴅ/ ᴅᴛ [ ʀx/( ʀ-2x) ] - ᴅ/ᴅᴛ [(ʀ-2x)ʀx] /( ʀ-2x)²
=ʀ [ (ᴅx/ ᴅᴛ) (ʀ-2x) ] - 2(ᴅx/ᴅᴛ)x / ( ʀ-2x)²
=ʀ[ᴠ (ʀ-2x) -[2ᴠ×0] / (ʀ-2x)²
=ᴠʀ²/(2x-ʀ)²
Similar questions