Math, asked by killerbandi69, 1 month ago

A particle is Moving in a circle of diametre 5m.Calculate the distance covered and the dusplacement when it completes 3 revolutions​

Answers

Answered by Yugant1913
40

Step-by-step explanation:

Given,

Diameter of the particle = 5m

 \sf \: Radius \:  =  \frac{d}{2}  =  \frac{5}{2}  = 2.5m \\

To find

  • Displacement when it completes 3 revolutions

Solution

 \sf \: Distance \:  in  \: 1  \: revaluation = 2\pi r\:

 \sf \: Distance \:  in \:  1 \:  revaluation = 2 \times  \frac{22}{7}  \times 2.5 \\

 \sf \: Distance \:  in \:   3\:  revaluation = 3 \times  \frac{22}{7}  \times 2 \times 2.5 \\

( we could take the value of pi 3.14)

 \qquad \qquad  \qquad \qquad \:  \sf \twoheadrightarrow \: 3 \times 3.14 \times 5

 \qquad \qquad  \qquad \qquad \:  \sf \twoheadrightarrow \:9.42 \times 5

 \qquad \qquad  \qquad \qquad \:  \sf \twoheadrightarrow \: \red {\frak{47.10}}

Hence, as the body come back to the same position the displacement is zero.

Answered by Aeryxz
131

\sf\red{Given :-}

\sf{Diametre = 5m}

\sf{radius = 2.5m}

\sf\red{Solution :-}

\sf{Distance \:  in  \: 1 \:  revolution :-}

\sf{⟹ 2 × π × r}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf⟹ 2 × \frac{22}{7}  \times 2.5

\sf{Distance \:  in \:  3 \:  revolution :-}

\sf{⟹ 3 × π × 2 × 2.5 }

\sf⟹ 3 ×  \frac{22}{7}  \times 2 \times 2.5

\sf{ ⟹ 47.1}m

★ Displacement is zero because it comes back to the position from where it was started.

Similar questions