Physics, asked by arnav1709, 10 months ago

A particle is moving on a straight line with speed
v = (30t^2 + 40t + 2) (where v is in m/s and t is in
s). The average speed from t= 0 to t = 5 s​

Answers

Answered by Anonymous
72

Answer:

\displaystyle{V_{ave}=352 \ m/sec}

Explanation:

Given :

Velocity ( v ) = 30 t² + 40 t + 2

We have to find average velocity :

We know :

\displaystyle{V_{ave}=\dfrac{Total \ displacement}{time}}

\displaystyle{V_{ave}=\dfrac{\int\limits^5_0 {30t^2+40t+2} \, dt }{5}}\\\\\\\displaystyle{V_{ave}=\dfrac{\left[30t^3/3+40t^2/2+2t\right]^5_0}{5}}

\displaystyle{V_{ave}=\dfrac{\left[10t^3+20t^2+2t\right]^5_0}{5}}}\\\\\\\displaystyle{V_{ave}=\dfrac{10\times125+20\times25+10}{5}}\\\\\\\displaystyle{V_{ave}=\dfrac{1250+500+10}{6}}\\\\\\\displaystyle{V_{ave}=\dfrac{1760}{5} \ m/sec}\\\\\\\displaystyle{V_{ave}=352 \ m/sec}

Hence we get average speed .

Answered by BrainlyConqueror0901
115

Answer:

{\bold{\therefore V_{Avg}=352\:ms^{-1}}}

Explanation:

{\bold{\huge{\underline{SOLUTION-}}}}

• In the given question information given about a particle moving on a straight line and time limit is given.

• We have to fins the average speed of particle.

 \underline   \bold{Given : } \\   \implies v =  ({30t}^{2}  + 40t + 2)m {s}^{ - 1}  \\  \\ \underline \bold{to \: find :  } \\  \implies Average \: Speed  = ?

• According to given question :

 \bold{Basic \: things : } \\    \\  \bold{Differentiation} \\  \implies Distance \implies Velocity  \implies Acceleration \\ \\   \bold{Integration} \\  \implies Accleration \implies Velocity \implies Distance \\  \\  \implies v =  {30t}^{2}  + 40t + 2 \\ \implies  \frac{dx}{dt}  = 30 {t}^{2}   + 20t + 2  \\  \implies dx = (30 {t}^{2} + 20t + 2)dt \\  \bold{Intergrating \: both \: side}\\ \int dx =  \int (30 {t}^{2}   + 20t + 2)dt \\  \implies x =  \frac{30 {t}^{3} }{3} +   \frac{20 {t}^{2} }{2}   + 2t \\  \implies x = 10 {t}^{3}  + 20 {t}^{2}  + 2t  \\ \bold{For \: average \: velocity}  \\  \implies  v_{avg} =  \frac{Total \: displacement}{Total \: time}  \\  \implies v_{avg} =  \frac{ 1 0 {t}^{3} + 20 {t}^{2}   + 2t }{5}  \\  \bold{Putting \:  limit \: 0 \to \:5} \\   \implies  v_{avg} =  \frac{10 \times  {5}^{3} + 20 \times  {5}^{2}   + 2 \times 5}{5}  \\  \implies v_{avg}  =  \frac{1250 + 500 + 10}{5}  \\  \implies v_{avg} =  \frac{1760}{5}  \\   \bold{\implies v_{avg} = 352 \: m {s}^{ - 1} }

Similar questions