Physics, asked by VerifiedAnswer1, 4 months ago

A particle is moving with a uniform speed in a circular orbit of radius R and a centripetal force which is directly proportional to the nth power of R acts in the particle. If the time period is T, and T² proportional to R^5/2, find n.​

Answers

Answered by Anonymous
1

Hope this helps you.....

Refer to the ⬆️ above attachment.....

Attachments:
Answered by Arceus02
3

Given that,

\sf F_c \propto R^n

\longrightarrow \sf F_c = k \times R^n

\longrightarrow \sf \dfrac{mv^2}{R} = k \times R^n

\longrightarrow \sf v^2 = \dfrac{k}{m} \times R^{(n + 1)}

\longrightarrow \sf v = \bigg(\dfrac{k}{m}\bigg)^{ \frac{1}{2}}  \times (R^{n+1})^{ \frac{1}{2} }

Let \sf \bigg(\dfrac{k}{m}\bigg)^{\frac{1}{2}} be \sf a (as this value is of no use in further steps). And \sf a is also a constant.

\longrightarrow \sf v = a \times R^{\big( \scriptsize\dfrac{n+1}{2}\big)}

\\

 \sf Time\:\:period = T = \dfrac{2\pi R}{V}

\longrightarrow \sf T = \Bigg[\dfrac{2\pi R}{\bigg(a \times R^{\big( \scriptsize\dfrac{n+1}{2}\big)}\bigg) }\Bigg]

Let \sf \dfrac{2\pi}{a} be \sf b.

 \longrightarrow \sf T = b \times \dfrac{R}{ R^{\big( \scriptsize\dfrac{n+1}{2}\big)}}

\\

\longrightarrow \sf T = b \times R^{\bigg[ 1 - \big(\dfrac{n+1}{2}\big)\bigg]}

\\

\longrightarrow \sf T = b \times  R^{\bigg[ 1 - \dfrac{1}{2} - \dfrac{n}{2}\bigg]}

\\

\longrightarrow \sf T = b \times R^{\bigg( \dfrac{1-n}{2}\bigg)}

\\

\longrightarrow \sf T \propto R^{\bigg( \dfrac{1-n}{2}\bigg)}

\\

\longrightarrow \sf T^2 \propto R^{(1-n)}\quad\quad \dots (1)

But, given that,

\sf T^2 \propto R^{\scriptsize \dfrac{5}{2}}\quad\quad \dots (2)

\\

From (1) and (2),

\sf 1 - n = \dfrac{5}{2}

\longrightarrow \sf n = 1 - \dfrac{5}{2}

\longrightarrow \underline{\underline{\sf{\green{n = -\dfrac{3}{2}}}}}

Similar questions