Physics, asked by thechylin12, 11 months ago


A particle is performing circular motion of radius 1 m. Its speed is v = (2t^2) m/s. What will be the magnitude
of its acceleration at t = 1s ?

Answers

Answered by BrainIyMSDhoni
47

Answer:

4 \sqrt{2} \: m/ {s}^{2}

Explanation:

For tangential acceleration

 =  > a_{T} =  \frac{dv}{dt}  \\  =  > a_{T} = 4t

At t = 1s

\boxed{a_{T} = 4m/ {s}^{2} }

For centripetal acceleration

 =  > a_{C} =  \frac{ {v}^{2} }{r}  \\  =  > a_{C} =  \frac{4 {t}^{4} }{1}  \\  =  > a_{C} = 4 {t}^{4}

At t = 1s

 \boxed{a_{C} = 4m/ {s}^{2} }

Net acceleration, (a)

 =  > a = \sqrt{ {a_{T}}^{2} +  {a_{C}}^{2} }  \\  =  > a =  \sqrt{ {4}^{2}  +  {4}^{2} }  \\  =  > a =  \sqrt{16 + 16}  \\  =  > a =  \sqrt{32 } \\  =  >  \boxed{a = 4 \sqrt{2} \: m/ {s}^{2} }

Answered by TheKingOfKings
48

Answer:

______________________

when particle perform circular motion it has two acceleration

1)centripetal acceleration (ac)

2)tangential acceleration( at)

v \:  = 2t {}^{2}  \\  \\ a \:  = 4t{}^{4} \\  \\ at \: time \:  = 1sec \\  \\ a \:  = 4 ms {}^{ - 2}  \\  \\

Tangential acceleration :

dv/dt

= 4ms^-2

  \\  \\ \huge \bold{ \frac{v {}^{2} }{r} }

Net acceleration :

 \huge \bold{ \sqrt{ac {}^{2}  + at {}^{2} } } \\  \\  \sqrt{4 {}^{2}  + 4 {}^{2} }  \\  \\   \sqrt{16 + 16 }  \\  \\   \sqrt{32 }  \\  \\ 4 \sqrt{2} ms {}^{ - 2}

✔❤__________________________❤

Similar questions