Physics, asked by vermavansh777, 6 months ago

A particle is projected from a tower of height 2 m
above ground with speed 3 m/s. Neglect any air
resistance to the particle's motion. Maximum
horizontal distance from the foot of the tower where
the particle can reach is (Take g = 10 m/s2)
(1) 1.7 m
(2) 1.9 m
(3) 2.1 m
(4) 2.3 m​

Attachments:

Answers

Answered by Anonymous
31

Given:

Height of tower = 2 m

Speed of particle = 3 m/s

To Find:

Maximum horizontal distance from the foot of the tower where the particle can reach

Answer:

Using equation of trajectory:

 \bf y = x \: tan \theta -  \dfrac{g {x}^{2} }{2 {u}^{2} }  {sec}^{2}  \theta

For P (x, -2):

 \rm \implies  - 2 = x \: tan \theta -  \dfrac{g {x}^{2} }{2 {u}^{2} }  {sec}^{2}  \theta \:  \:  \:  \: ...eq_1

For x max,  \sf \dfrac{dx}{d \theta} = 0

By differentiating both sides of  \sf eq_1 we get:

 \rm \implies  \dfrac{d}{d \theta} ( - 2) =  \dfrac{dx}{d\theta} tan \theta + x \:  {sec}^{2}  \theta -  \dfrac{g}{ {u}^{2} } x  \: {sec}^{2}  \theta. \dfrac{dx}{d\theta}  -  \dfrac{g {x}^{2} }{ {u}^{2} } . {sec}^{2}  \theta tan \theta \\  \\  \rm \implies 0 = 0 + x  \: {sec}^{2}  \theta - \dfrac{g {x}^{2} }{ {u}^{2} } . {sec}^{2}  \theta tan \theta  \\  \\  \rm \implies \dfrac{g { x}^{ \cancel{2}} }{ {u}^{2} } . \cancel{ {sec}^{2}  \theta }tan \theta  = \cancel{x } \:  \cancel{{sec}^{ 2}  \theta} \\  \\  \rm \implies \dfrac{gx}{ {u}^{2} } tan \theta = 1 \\  \\  \rm \implies tan \theta =  \dfrac{ {u}^{2} }{gx}

Now putting this value in  \sf eq_1 we get:

 \rm \implies  - 2 = x \: tan \theta -  \dfrac{g {x}^{2} }{2 {u}^{2} } (1 +  {tan}^{2}  \theta ) \\  \\  \rm \implies  - 2 =  \cancel{x} \times  \dfrac{ {u}^{2} }{g \cancel{x}}  -\dfrac{g {x}^{2} }{2 {u}^{2} } (1 +  \dfrac{ {u}^{4} }{g ^{2}  {x}^{2} } ) \\  \\  \rm \implies  - 2 =  \dfrac{ {u}^{2} }{g}  -\dfrac{g   {x}^{2} }{2 {u}^{2} }    -\dfrac{ \cancel{g}  \cancel{{x}^{2} }}{2 {u}^{2} } \times  \dfrac{ {u}^{4} }{g ^{ \cancel{2}}  \cancel{{x}^{2} } }  \\  \\  \rm \implies - 2 =  \dfrac{ {u}^{2} }{g}  -  \dfrac{g {x}^{2} }{2 {u}^{2} }  -  \dfrac{ {u}^{2} }{2g}  \\  \\  \rm \implies \dfrac{g {x}^{2} }{2 {u}^{2} } = 2 +  \dfrac{ {u}^{2} }{2g}  \\  \\  \rm \implies {x}^{2}  =  \dfrac{ \cancel{2} {u}^{2} }{g}  \bigg( \dfrac{4g +  {u}^{2} }{ \cancel{2}g}  \bigg) \\  \\  \rm \implies {x}^{2}  =  \dfrac{ {u}^{2} }{ {g}^{2} } (4g +  {u}^{2} ) \\  \\ \rm \implies x =  \sqrt{ \dfrac{ {u}^{2} }{ {g}^{2} } (4g +  {u}^{2} )}  \\  \\ \rm \implies x =   \dfrac{u}{g} \sqrt{4g +  {u}^{2} }   \\  \\  \rm \implies x =   \dfrac{3}{10} \sqrt{4 \times 10 +  {3}^{2} }  \\  \\  \rm \implies x =   0.3\sqrt{40+  9 }   \\  \\  \rm \implies x =  0.3 \times 7  \\  \\  \rm \implies x =  2.1 \: m

 \therefore Maximum horizontal distance from the foot of the tower where the particle can reach = 2.1 m

Correct Option:  \boxed{\mathfrak{(3) \ 2.1 \ m}}

Attachments:
Answered by lori376
10

R = u√(2H/g)

R = 3 √(2×2/10)

R = 3 √0.4

R = 3 × 0.63

R = 1.89 m

R = 1.9 m

Similar questions