Physics, asked by samdon3514, 11 months ago

A particle is projected from ground with velocity 40(sqrt2) m//s at 45^@. Find (a) velocity and (b) displacement of the particle after 2 s. (g = 10 m//s^2)

Answers

Answered by anishkrishnan
0

Answer:

(A)  v = usin∅  + at

      v = 40√2 × 1/√2  + 10 × 2

         = 40 + 20 = 60 m/s

(b)  s = usin∅t + 0.5at^2                  

        = 40√2 × 1/√2 × 2 + 0.5 × 10 × 2^2

        = 80 + 20 = 100 m

Answered by rahul123437
0

(a) velocity = 44.72 m/s

(b) displacement of the particle after 2 s

= 100 meter.

Given:

A particle is projected from ground with velocity 40\sqrt2 m//s

at 45°,     g = 10 m/s²

To find:

(a) velocity

(b) displacement of the particle after 2 s.

Formula used:

v=u +at

s =ut +\frac{1}{2} at²

where u = initial velocity

          t = time

          a = acceleration

Explanation:

Velocity 40\sqrt2 m//s  at 45°        

Velocity in x direction  = 40\sqrt2 × cos 45°

                                     = 40 m/s

Velocity in x direction  = 40\sqrt2 × sin 45°

                                     = 40 m/s

Velocity vector = 40 \hat{\imath}+40 \hat{\jmath}

Acceleration vector = -10 \hat{\jmath}

                     t = 2 sec.

    \vec{v}=\vec{u}+\vec{a} \mathrm{t}

    \vec{v}= (40 \hat{\imath}+40 \hat{\jmath}) + (-10 \hat{\jmath}) ×2

    \vec{v}= 40 \hat{\imath}+20 \hat{\jmath}

Magnitude of velocity = \sqrt{40^{2} + 20^{2} } = 44.72 m/s

   \vec{s}=\vec{u}t +\frac{1}{2} \vec{a}

   \vec{s} = 80 \hat{\imath}+60 \hat{\jmath}

Magnitude of displacement = \sqrt{80^{2} + 60^{2} } = 100 meter.

To learn more....

1)What are the resultants of the vector product of two given vectors given by

A = 4i - 2j + k and B = 5i + 3j - 4k?

https://brainly.in/question/4175836

2)What vector must be added to the two vectors i- 2j + 2k and 2i+j-k that the resultant may be a unit vector along x axis

https://brainly.in/question/11980444

           

Similar questions