Physics, asked by anuragupendrami2482, 9 months ago

A particle is projected from ground with velocity 50 m//s at 37^@ from horizontal. Find velocity and displacement after 2 s. sin 37^@ = 3/5.

Answers

Answered by mad210216
10

Given:-

Initial velocity u = 50m/sec.

Angular Projection θ = 37°.

Time t = 2sec.

To Find:-

Determine final velocity and displacement.

Solution:-

Then Initial velocity in x and y direction

u_{x} = 50cos37° = 50x(4/5) = 50x\frac{4}{5} = 40m/sec.

u_{y} = 50sin37° = 50x(3/5) = 50x\frac{3}{5} = 30m/sec.

Initial Velocity Vector \vec{U} = (40\hat{i} + 30\hat{j})m/sec

Acceleration Vector  \vec{a} = (-10\hat{j})m/sec².

Final velocity

\vec{V} = \vec{U} + \vec{a}t

\vec{V} = (40\hat{i} + 30\hat{j}) + (-10\hat{j})(2).

Final velocity V =  (40\hat{i} + 10\hat{j})

V = \sqrt{40^{2} +10^{2}  }  = \sqrt{1700} = 41.23m/sec

Final Displacement Vector.

 \vec{S} = \vec{U}t + 1/2\vec{a}

 \vec{S} = \vec{U}t + \frac{1}{2}at^{2}

 \vec{S} =(40\hat{i} + 30\hat{j})(2) + 1/2(-10\hat{j})(4)

 \vec{S} = (40\hat{i} + 30\hat{j})(2) + \frac{1}{2}(-10j)(4)

 \vec{S} = ( 80\hat{i} +40\hat{j})

 Then final Displacement

  S_{net} = \sqrt{80^{2}+ 40^{2}  } = \sqrt{8000} = 89.44m.

 Final Displacement will be = 89.44m

Similar questions