Physics, asked by xeenakhan21268pe0j21, 1 year ago

A particle is projected in such a way that,taking point of projection as origin,y=8t-6t^2 and x=6t.what is the range of projectile?

Answers

Answered by kahkashans31
23

Here,is your solution
If it benefit for you then mark brainleist answer

Attachments:
Answered by payalchatterje
0

Answer:

The range of projectile is 8 meter.

Explanation:

Given,

          y = 8t - 6t^2  .................................................(i)

  and  x =6t         ...................................................(ii)

Equation of a trajectory in projectile motion ,

    y= u\sin\theta \ t - \frac{1}{2}gt^2    ................................................(iii)

   x = u\cos\theta \ t ...............................................................(iv)

Comparing eqn. (i) and (iii),we can write

  u\sin\theta = 8      and  \frac{g}{2} = 6   → g =12 m/sec^2

Comparing eqn.(ii) and (iv),we will get

               u\cos\theta = 6

Horizontal range, R = \frac{u^2\sin2\theta}{g} = \frac{2u\sin\theta (u \cos\theta)}{g}

    ∴R = \frac{2* 8 *6}{12}  = 8 meter

Similar questions