A particle is projected vertically up from the top of a tower with velocity 10m/s . It reaches the ground in 5 second find
Answers
Answer
- Height , h = 75 m
- Distance , d = 85 m
Correct Question
- A particle is projected vertically up from the top of a tower with velocity 10 m/s . It reaches ground in 5 s. Find height of tower and distance traversed by particle ?
Given
- Initial velocity , u = 10 m/s
- Total Time , t = 5 s
To Find
- Height of the tower , CD = ? m
- Distance traversed by particle , AD = ? m
Concept Used
Equations of motion
- v = u + at
- s = ut + ¹/₂ at²
- v² - u² = 2as
Solution
Case - 1 : AB
Initial velocity , u = 10 m/s
Final velocity , v = 0 m/s [ Since goes to rest ]
Acceleration , g = - 10 m/s² [ Against gravity ]
Distance , AB = s'
Apply 3rd equation of motion .
⇒ v² - u² = 2as
⇒ 0² - 10² = 2 ( -10 ) s'
⇒ - 100 = - 20 s'
⇒ s' = 5 m
Let time be t'
Apply 1st equation of motion .
⇒ v = u + at
⇒ 0 = 10 - gt'
⇒ 10t' = 10
⇒ t' = 1 s
Case - 2 : BD
Time , t" = t - t'
⇒ t" = 5 - 1
⇒ t" = 4 s
Acceleration , g = 10 m/s²
Initial velocity , u = 0 m/s [ ∵ After going to extreme position it starts fall down ]
Distance , BD = s"
Apply 2nd equation of motion .
s = ut + ¹/₂ at²
⇒ s" = ¹/₂ × 10 × (t")²
⇒ s" = 5(4)²
⇒ s" = 5(16)
⇒ s" = 80 m
So , Total distance traversed by particle , s = s' + s"
⇒ s = 5 + 80
⇒ s = 85 m
Height of the tower , h = CD
⇒ h = BD - BC
⇒ h = BD - AB [ ∵ AB = BC ]
⇒ h = s" - s'
⇒ h = 75 m