Physics, asked by jsjeetu9454, 10 months ago

A particle is rotated in a vertical circle by connecting it to a string of length l and keeping the other end of the string fixed. The minimum speed of the particle when the string is horizontal for which the particle will complete the circle is
(a) √glgl√
(b) √2gl2gl√
(c) √3gl3gl√
(d) √5gl5gl√

Answers

Answered by bhuvna789456
4

The minimum speed of the particle is \sqrt{3 g l}.

Explanation:

Let the Particulate speed be v m / s when the strings are vertical.

Now, by its own weight, it's balanced  i.e., mg.  

Therefore,  

                \frac{m v^{2}}{l}=m g

               m v^{2}=m g l

                 v^{2}=\frac{m g l}{m}

                 v^{2}=g l

Let the Particles speed be u m / s, when the strings are horizontal.

Now,  

Total Energy =\frac{1}{2} m u^{2}

Also, Total Energy   =\frac{1}{2} m v^{2}+\mathrm{mgl}

Thus,  

We're getting from this,

                          \frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}+\mathrm{mgl}

            \frac{1}{2} m u^{2}-\frac{1}{2} m v^{2}=\mathrm{mgl}

              \frac{1}{2} m\left(u^{2}-v^{2}\right)=\mathrm{mgl}

                    \left(u^{2}-v^{2}\right)=\frac{2 m g l}{m}

                     \left(u^{2}-v^{2}\right)=2 m g l

                                v^{2}=g l

                         u^{2}-g l=2 g l

                                 \mathrm{u}^{2}=2 \mathrm{g} +\mathrm{gl}

                                 u^{2}=3 g l

                                  u=\sqrt{3 g l}

Thus, the speed is u=\sqrt{3 g l}.

Answered by Anonymous
0

\huge{\boxed{\mathcal\pink{\fcolorbox{red}{yellow}{Answer}}}}

 \sqrt{3g} l

Similar questions