Physics, asked by Kyuvaraj4243, 11 months ago

A particle is thrown vertically upwards. Its velocity at one-fourth of the maximum height is 20 ms−1.Then, the maximum height attained by it is

Answers

Answered by BrainlyConqueror0901
22

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Maximum\:height=26.67\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies Velocity \: at \: one \: fourth = 20 \: m/s \\  \\  \red{\underline \bold{To \: Find:}}\\  \tt:  \implies Maximum \: height \: attained = ?

• According to given question :

 \tt \circ \: Let \: height \: be \: h \\  \\  \tt \circ \: Final \: velocity = 20 \: m/s \: at \:  \frac{h}{4} \\  \\  \tt \circ \: Acceleration =  - 10   \:  {m/s}^{2}  \\ \\  \bold{As \: we \: know \: that : } \\  \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2as \\   \\  \tt:  \implies  {20}^{2}  =  {u}^{2} + 2 \times  ( - 10) \times  \frac{h}{4}   \\  \\  \tt:  \implies 400 =  {u}^{2}  - 5h \\  \\  \tt:  \implies  {u}^{2}  = 400 + 5h -  -  -  -  - (1) \\  \\  \tt \circ \: Final \: velocity = 0 \: m/s \:  \:  \: (For \: maximum \: height) \\  \\  \bold{As \: we \: know \: that} \\   \tt:  \implies   {v}^{2}  =  {u}^{2}  + 2as \\  \\  \tt:  \implies   {0}^{2}  =  {u}^{2}  + 2 \times ( - 10) \times h \\  \\  \tt:  \implies  0 =  {u}^{2}  - 20h \\  \\  \tt:  \implies   {u}^{2}  = 20h -  -  -  -  - (2) \\  \\ \circ \:   \tt{Putting \: value \: of \:  {u}^{2}  \: in \: (1)} \\   \tt:  \implies  20h = 400  + 5h \\  \\  \tt:  \implies  15h = 400 \\  \\  \tt:  \implies h =  \frac{400}{15}  \\  \\   \green{\tt:  \implies  h  =  26.67 \: m} \\  \\   \green{\tt \therefore Maximum \: height \: attained \: is \: 26.67 \: m}

Answered by VishalSharma01
72

Answer:

Explanation:

Given :-

Velocity at one - fourth height = 20 m/s

To Find :-

Maximum Height Attained by particle.

Formula to be used :-

v² = u² + 2as

Solution :-

Let maximum height be h m.

And the initial velocity is u m.

Final velocity at maximum height , v = 0

Using 3rd equation, v² = u² + 2as

⇒ 0 = u² + 2gh

u ² = 2gh .... (i)

Final velocity at height   h/4, v = 20 m/s

Using 3rd equation, v² = u² + 2as

⇒ 20² = u² + 2g × h/4

⇒ 20 ² = 2gh + gh/2 (Putting Eq (i))

⇒ h = 80/3

h = 26.67 m

Hence, the maximum height attained by particle is 26.67 m.

Similar questions