Physics, asked by Gouriheera, 1 year ago

a particle is thrown with a initial velocity 2i+3j m/s .the horizontal range is​

Answers

Answered by nirman95
7

THE RANGE OF PARTICLE IS 1.2 metres.

Given:

  • Particle is thrown with a velocity of 2i + 3j m/s.

To find:

Horizontal range of the particle?

Calculation:

First of all, let's calculate the angle of projection.

 \tan( \theta)  =  \dfrac{ v_{y} }{ v_{x}}

 \implies \tan( \theta)  =  \dfrac{ 3 }{ 2}

So, the value of :

 \cos( \theta)  =  \dfrac{2}{ \sqrt{13} }  \: and \:  \sin( \theta)  =  \dfrac{3}{ \sqrt{13} }

Now, let horizontal range be R :

R =  \dfrac{ {u}^{2}  \sin(2 \theta) }{g}

 \implies R =  \dfrac{ {u}^{2}   \times 2 \sin( \theta)  \cos( \theta) }{g}

 \implies R =  \dfrac{ {( \sqrt{13}) }^{2}   \times 2  \times  \dfrac{2}{ \sqrt{13} }  \times  \dfrac{3}{ \sqrt{13} } }{10}

 \implies R =  \dfrac{ 13   \times 2  \times  \dfrac{2}{ \sqrt{13} }  \times  \dfrac{3}{ \sqrt{13} } }{10}

 \implies R =  \dfrac{ 2  \times 2 \times 3 }{10}

 \implies R = 1.2 \: metres

The range of particle is 1.2 metres.

Similar questions