Physics, asked by ayaanajohnsonctnr, 8 months ago

A particle moves along a straight line such that its displacement at any time is given by s=(t2-3t2+2)m .The displacement when the acceleration becomes zero is​

Answers

Answered by Anonymous
37

Correct Question:

A particle moves along a straight line such that its displacement at any time is given by s=(t³ - 3t² + 2)m .What is the displacement of particle when the acceleration becomes zero?

Answer:

 \boxed{\mathfrak{Displacement \ (s) = zero}}

Explanation:

Displacement of particle w.r.t. time:

 \rm s =  {t}^{3}  - 3 {t}^{2}  + 2

Double differentiation of displacement-time relation gives accelration:

 \rm \implies a =  \dfrac{ {d}^{2} s}{d {t}^{2} }  \\  \\  \rm \implies a =   \dfrac{ {d}^{2} }{d {t}^{2} } ( {t}^{3} - 3 {t}^{2}   + 2) \\  \\  \rm \implies a =  6t - 6 \\  \\  \rm \implies a =  6(t - 1)

When Acceleration (a) = 0

 \rm \implies 0 = 6(t - 1) \\  \\  \rm \implies t - 1 = 0 \\  \\  \rm \implies t = 1s

So, displacement (s) when accelration becomes zero:

 \rm \implies s =  {1}^{3}  - 3( {1}^{2}) + 2  \\  \\  \rm \implies s =1 - 3 + 2 \\  \\  \rm \implies s =3 - 3 \\  \\  \rm \implies s =0

Note: As the displacement of particle is zero it means that particle have returned to its initial position.

Answered by DARLO20
83

GIVEN :-

  • A ᴘᴀʀᴛɪᴄʟᴇ ᴍᴏᴠᴇs ᴀʟᴏɴɢ ᴀ sᴛʀᴀɪɢʜᴛ ʟɪɴᴇ .

  • Tʜᴇ ᴅɪsᴘʟᴀᴄᴇᴍᴇɴᴛ ᴏғ ᴛʜᴇ ᴘᴀʀᴛɪᴄʟᴇ ᴀᴛ ᴀɴʏ ᴛɪᴍᴇ ɪs ɢɪᴠᴇɴ ʙʏ "S = [t³ - 3t² + 2] m" .

  • Aᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ = 0 m/ .

TO FIND :-

  • Tʜᴇ ᴅɪsᴘʟᴀᴄᴇᴍᴇɴᴛ ᴡʜᴇɴ ᴛʜᴇ ᴀᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ ʙᴇᴄᴏᴍᴇs ʀ .

SOLUTION :-

ᴡᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

\huge\red\checkmark \bf\purple{\dfrac{dS}{dt}\:=\:Velocity\:(v)\:}

\huge\red\checkmark \bf\purple{\dfrac{dv}{dt}\:=\:Acceleration\:(a)\:}

☯︎ Iᴛ ᴍᴇᴀɴs, ᴛʜᴇ ᴅᴏᴜʙʟᴇ ᴅɪғғᴇʀᴇɴᴄɪᴀᴛɪᴏɴ ᴏғ Dɪsʟɴ ǫɪɴ ɪs ʟʀɪɴ .

\bf{:\implies\:\dfrac{d^2S}{dt^2}\:=\:Acceleration\:}

\rm{:\implies\:\dfrac{d}{dt}\:\left[\dfrac{d(t^3\:-\:3t^2\:+\:2)}{dt}\right]\:=\:Acceleration\:}

\rm{:\implies\:\dfrac{d}{dt}\:\left[\dfrac{dt^3}{dt}\:-\:3\times{\dfrac{dt^2}{dt}}\:+\:2\times{\dfrac{d1}{dt}}\right]\:=\:Acceleration\:}

\rm{:\implies\:\dfrac{d}{dt}\:\left[3t^2\:-\:6t\:+\:0\right]\:=\:Acceleration\:}

\rm{:\implies\:3\times{\dfrac{dt^2}{dt}}\:-\:6\times{\dfrac{dt}{dt}}\:=\:Acceleration\:}

\bf\pink{:\implies\:6t\:-\:6\:=\:Acceleration\:}

☯︎ Gɪᴠᴇɴ ᴛʜᴀᴛ, ᴀᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ ɪs ʀ .

\rm{:\implies\:6t\:-\:6\:=\:0\:}

\rm{:\implies\:6t\:=\:6\:}

\rm{:\implies\:t\:=\:\dfrac{6}{6}\:}

\bf\green{:\implies\:t\:=\:1\:second}

☯︎ Nᴏᴡ, ᴘᴜᴛᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏғ 't' ɪɴ ᴛʜᴇ ɢɪᴠᴇɴ ᴅɪsᴘʟᴀᴄᴇᴍᴇɴᴛ ᴇǫᴜᴀᴛɪᴏɴ .

➳ S = 1³ - (3 × 1²) + 2

➳ S = 1 - (3 × 1) + 2

➳ S = 3 - 3

S = 0

\huge\red\therefore Tʜᴇ ᴅɪsᴘʟᴀᴄᴇᴍᴇɴᴛ ᴡʜᴇɴ ᴛʜᴇ ᴀᴄᴄᴇʟᴇʀᴀᴛɪᴏɴ ʙᴇᴄᴏᴍᴇs ᴢᴇʀᴏ is "0 m" .

Similar questions