Math, asked by prathasinghparihar, 4 months ago

a particle moves along the curve 6y=x^3+2 . find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate?​

Answers

Answered by Anonymous
1

Answer:

ForSphere

\rm Radius \: (r) = 4.2 \: cmRadius(r)=4.2cm

\therefore \sf Volume \: of \: sphere = \frac{4}{3}\pi r {}^{2} ∴Volumeofsphere=

3

4

πr

2

\: \: \: \: \: \: \sf = \frac{4}{3}\pi (4.2) {}^{3} \: cm {}^{3} =

3

4

π(4.2)

3

cm

3

\bf {For \: Cylinder}ForCylinder

\rm Radius(R) = 6 \: cmRadius(R)=6cm

\sf{Let \: the \: height \: of \: the \: cylinder \: be \: H \: cm.}LettheheightofthecylinderbeHcm.

\rm Then, \: Then,

\sf{Volume \: of \: Cylinder = \pi r {}^{2} H = \pi(6) {}^{2} H \: cm {}^{3} }VolumeofCylinder=πr

2

H=π(6)

2

Hcm

3

\rm According \: to \: the \: Question,AccordingtotheQuestion,

\sf{Volume \: of \: the \: metallic \: sphere \: must \: be}Volumeofthemetallicspheremustbe

\rm = Volume \: of \: the \: cylinder=Volumeofthecylinder

\implies \: \: \: \: \sf\frac{4}{3} \: \pi(4.2) {}^{3} = \pi(6) {}^{2} h⟹

3

4

π(4.2)

3

=π(6)

2

h

\rm Dividing \: both \: sides \: by \: \pi \: and \: cross \: multiplying,Dividingbothsidesbyπandcrossmultiplying,

\: \: \: \: \: \: \: \: \sf{3(6) {}^{2} H = 4(4.2) {}^{3} }3(6)

2

H=4(4.2)

3

\begin{gathered} \implies \: \: \: \: \: \: \sf{ H = \frac{4(4.2) {}^{3}} {3(6) {}^{2}}} \\ \end{gathered}

⟹H=

3(6)

2

4(4.2)

3

\begin{gathered} \implies \: \: \rm H = \frac{4 \times 4.2 \times 4.2 \times 4.2}{3 \times 6 \times 6} \\ \end{gathered}

⟹H=

3×6×6

4×4.2×4.2×4.2

\: \: \: \: \: \: \: \sf = 4 \times 1.4 \times 0.7 \times 0.7=4×1.4×0.7×0.7

\begin{gathered} \: \: \: \: \: \: \: \: \: \rm = 4 \times \frac{14}{10} \times \frac{7}{10} \times \frac{7}{10} \\ \end{gathered}

=4×

10

14

×

10

7

×

10

7

\begin{gathered} \: \: \: \: \: \: \sf = \frac{56 \times 49}{1000} = \frac{2744}{1000} \\ \end{gathered}

=

1000

56×49

=

1000

2744

\implies \rm \: \: \: \: \: \: \: \: H = 2.744⟹H=2.744

\begin{gathered} \sf Hence, \: the \: height \: of \: the \: cylinder \: is \: 2.744 \\ \: \sf \:cm.\end{gathered}

Hence,theheightofthecylinderis2.744

cm.

Answered by Anonymous
4

Given that,

A particle moving along the curve

6y = x³ + 2 ...(1)

[we need to find points on the curve at which y coordinate is changing 8 times as fast as the x coordinate]

i.e.

we need to find (x,y) for which

 \sf \frac{dy}{dt}  =  8\frac{dx}{dt} \\

From (1)

Diff. both sides w.r.t (t)

 \implies \sf\frac{d(6y)}{dt}  =  \frac{d( {x}^{3}  + 2)}{dt}  \\

 \sf \implies6\frac{dy}{dt}  =  \frac{d( {x})^{3} }{dt}  +  \frac{d(2)}{dt}  \\

 \sf\implies6 \frac{dy}{dt}  =  \frac{d {(x)}^{3}  }{dt}   \times   \frac{dx}{dx}  + 0 \\

 \sf\implies6 \frac{dy}{dt}  =  \frac{d {(x)}^{3} }{dx}  \times  \frac{dx}{dt}  \\

 \sf\implies6 \frac{dy}{dt}  = 3 {x}^{2} . \frac{dx}{dt}  \\

 \sf \implies\frac{dy}{dt}  =  \frac{3 {x}^{2} }{6} . \frac{dx}{dt}  \\

  \sf\implies\frac{dy}{dt}  =  \frac{ {x}^{2} }{2} . \frac{dx}{dt}    \:  \:  \:  \:  \: ...(2) \\

We need to find point for which

 \sf \frac{dy}{dt}  = 8 \frac{dx}{dt}  \\

Putting \sf\frac{dy}{dt}  =  \frac{ {x}^{2} }{2} . \frac{dx}{dt}\\ from (2)

 \sf\implies\frac{ {x}^{2} }{2} . \frac{dx}{dt}    = 8 \frac{dx}{dt}  \\

 \sf\implies \frac{ {x}^{2} }{2}  = 8 \\

 \sf\implies \:  {x}^{2}  = 16

 \sf\implies \: x = ± \sqrt{16}

 \sf\implies \: \boxed{ x = ±4}

x = 4 , - 4

Putting values of x in equation (1)

When, x= 4

we get, y = 11

point is (4,11)

When,x = -4

we get, y = -31/3

so point is  \sf( - 4, \frac{ - 31}{3} )

 \bold{ \bigstar \: answer \bigstar}

Hence, required points on the curve are  \sf(4,11) and  \sf( - 4, \frac{ - 31}{3} )

Similar questions