Math, asked by mukulpunia, 2 months ago

A particle moves along the curve x= 3t²- 2 , y = 2t -t^2, z=t^3+4 Find the
velocity and acceleration at t=4.​

Answers

Answered by suhail2070
1

Answer:

VELOCITY = 48 m/ s

ACCELERATION = 24.82 m/ s^2.

Step-by-step explanation:

 \frac{dx}{dt}  = 6t = 6 \times 4 = 24 \\  \\  \frac{dy}{dt}  = 2 - 2t = 2 - 2 \times 4 = 2 - 8 =  - 6 \\  \\  \frac{dz}{dt}  = 3 {t}^{2}  = 3 \times 16 = 48 \\  \\  \\ v =  \sqrt{ {24}^{2}  +  {6}^{2} +  {48}^{2}  }  =  \sqrt{576 + 36 + 2304}  =  \sqrt{2304}  = 48 \: m {s}^{ - 1}  \\  \\  \frac{ {d}^{2}x }{d {t}^{2} }  = 6 \\  \\  \frac{ {d}^{2} y}{d {t}^{2} }  =  - 2 \\  \\  \frac{ {d}^{2}z }{d {t}^{2} }  = 6t = 6 \times 4 = 24 \\  \\  \\ acceleration =  \sqrt{ {6}^{2} +  {2}^{2}  +  {24}^{2}  }  =  \sqrt{36 + 4 + 576}  =  24.82 \: m {s}^{ - 2} .

Similar questions