Physics, asked by Anonymous, 7 hours ago

A particle moves along the x-axis from x=0 to x=5 m under the influence of a force given by  \sf {F=7−2x+3x^{2}} The work done in the process is ?

#Don't be greedy for points!
#Relevant answers are considered as brainliest answers!
#No Spam.​

Answers

Answered by Anonymous
37

❥Heyo Meoww✌️!

➻If you're good at integration, you're gonna crack this in a giffy ;]

____________________________

 \rm \red {\maltese{\underline{\underline{Provided:}}}}

➻So we've been given the limits from 0 to 5.

 \sf {⇨Initial\: limit=0}

 \sf {⇨Final\: limit=5}

 \sf {⇨Force(F)=7−2x+3x^{2}}

 \rm \blue {\maltese{\underline{\underline{To\: Find:}}}}

➻The work done in the process of displacement is?

 \rm \pink {\maltese{\underline{\underline{We\: Know:}}}}

 \sf \implies {\boxed{\underline{W=\displaystyle \int F\: dx}}}

 \sf \to {\displaystyle \int\limits_{0}^{5} (7−2x+3x^{2})\: dx}

 \sf \to {\displaystyle \int\limits_{0}^{5} 7\: dx-\displaystyle \int\limits_{0}^{5}2x\: dx+ \displaystyle \int\limits_{0}^{5}3x^{2}\: dx}

\large \sf \to {[7x]_{0}^{5}-[\frac{2x^{2}}{2}]_{0}^{5}+[\frac{3x^{3}}{3}]_{0}^{5}}

 \large \sf \to {[7x]_{0}^{5}-[\frac{\cancel{2}x^{2}}{\cancel{2}}]_{0}^{5}+[\frac{\cancel{3}x^{3}}{\cancel{3}}]_{0}^{5}}

 \sf \to {7(5-0)-(5)^{2}-0+(5)^{3}-0}

 \sf \to {7(5)-25+125}

 \sf \to {35-25+125}

 \sf \to {10+125}

 \sf \implies \green {\boxed{\boxed{135J}}}

 \rm \purple {\maltese{\underline{\underline{Henceforth,}}}}

➻The work done in the process is '135 joules' respectively.

____________________________

ᵜpew pewᵜ !

⍟Take care n study well :)<3

Similar questions