Physics, asked by priyanimmaluri9871, 1 year ago

A particle moves along the x axis from x=0 to x=5m under an influence of a force given by f=7-2x+3x square.Find the work done in the process

Answers

Answered by Narendhra
1
Work done = F.S = 18X5 = 90







Answered by Anonymous
83

Explanation:

\Large{\underline{\sf{\blue{Given:}}}}

\sf{A\:particle\:moves\:from\:x\:=\:0\:\:to\:\:x\:=\:5m}

\sf{F\:=\:7-2x+3x^2}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\Large{\underline{\sf{\red{To\:Find:}}}}

- \sf{Work\:done\:in\:the\:process}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\Large{\underline{\sf{\green{Solution:}}}}

\sf F\:=\:7\,-2x\,+3x^2

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf{W\:=\:} \displaystyle\int\limits_{x=0}^{x=5} fdx

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf{W\:=\:} \displaystyle\int\limits_{0}^{5} 7\,-2x\,+3x^2 dx

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf{W} \sf \:=\: \left[7x \dfrac{2x^2}{2}+ \dfrac{3x^3}{3}\right]_{0}^{5}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf{W} \sf \:=\: \left[7x-x^2+x^3\right]_{0}^{5}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \therefore W \sf \:=\: \left[7\times 5-(5)^2+(5)^3-0\right]

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf{\implies W\:=\:(35\:-25\:+25)J}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\boxed{\Large{\sf{\pink{Work\:done\:=\:135\,J}}}}

Similar questions