A particle moves at 5 i m/s. If its mass is 2g, then its magnitude of momentum is
Answers
Answer:
Explanation:
By conservation of momentum, m1×u1 + m2 × u2 = m1 × v1 + m2 × v2 .............(1)
where u1 and u2 are initial velocities. Similarly v1 and v2 are final velocities
we are given :- m1 = 2kg, m2 = 3kg , u1 = 5i m/s , u2 = -2i m/s , v1 = -1.6 i
substituting this data in eqn.(1), we get, 2×5i + 3×(-2i) = 2×(-1.6i) + 3×v2 .............(2)
solving eqn.(2), we get V2 = 2.4 i
velocity of centre of mass after collision =begin mathsize 12px style equals space fraction numerator m subscript 1 cross times v subscript 1 space plus space m subscript 2 cross times v subscript 2 over denominator m subscript 1 plus m subscript 2 end fraction space equals space fraction numerator 2 cross times left parenthesis negative 1.6 i right parenthesis space plus 3 cross times 2.4 i over denominator 2 plus 3 end fraction space equals space 4 over 5 i space end style
coefficient of restitution e is given by, v1-v2 = -e × (u1-u2) ............(3)
hence from eqn.(3), e = ( 1.6 + 2.4 ) / ( 5 + 1.6) = 0.61
(all velocities are in x-direction, hence only magnitudes are considered to get coefficient of restitution )
Answer:
By conservation of momentum, m1×u1 + m2 × u2 = m1 × v1 + m2 × v2 .............(1)
where u1 and u2 are initial velocities. Similarly v1 and v2 are final velocities
we are given :- m1 = 2kg, m2 = 3kg , u1 = 5i m/s , u2 = -2i m/s , v1 = -1.6 i
substituting this data in eqn.(1), we get, 2×5i + 3×(-2i) = 2×(-1.6i) + 3×v2 .............(2)
solving eqn.(2), we get V2 = 2.4 i
velocity of centre of mass after collision =begin mathsize 12px style equals space fraction numerator m subscript 1 cross times v subscript 1 space plus space m subscript 2 cross times v subscript 2 over denominator m subscript 1 plus m subscript 2 end fraction space equals space fraction numerator 2 cross times left parenthesis negative 1.6 i right parenthesis space plus 3 cross times 2.4 i over denominator 2 plus 3 end fraction space equals space 4 over 5 i space end style
coefficient of restitution e is given by, v1-v2 = -e × (u1-u2) ............(3)
hence from eqn.(3), e = ( 1.6 + 2.4 ) / ( 5 + 1.6) = 0.61
(all velocities are in x-direction, hence only magnitudes are considered to get coefficient of restitution )
Explanation: