Physics, asked by aakarshanand2004, 9 months ago

A particle moves from position 3i^+2j^−6k^ to 14i^+13j^+9k^ due to uniform force of 4i^+j^+3k^N. If the displacement is in meters, then find the work done.

Answers

Answered by Anonymous
31

Given :

▪ Initial position = \tt{3\hat{i}+2\hat{j}-6\hat{k}}

▪ Final position = \tt{14\hat{i}+13\hat{j}+9\hat{k}}

▪ Force = \tt{4\hat{i}+1\hat{j}+3\hat{k}}N

To Find :

▪ Work done on the particle.

____________________________

Solution :

✒ Work done is defined as the dot product of force and displacement.

✒ It is a scalar quantity.

✒ It has only magnitude.

✒ SI unit : Nm = Joule(J)

Displacement of particle :

\rightarrow\sf\:\vec{d}=x_2-x_1\\ \\ \rightarrow\sf\:\vec{d}=(14\hat{i}+13\hat{j}+9\hat{k})-(3\hat{i}+2\hat{j}-6\hat{k})\\ \\ \rightarrow\sf\blue{\vec{d}=11\hat{i}+11\hat{j}+15\hat{k}}

Work done :

\mapsto\sf\:W=\vec{F}\:{\tiny{\bullet}}\:\vec{d}\\ \\ \mapsto\sf\:W=(4\hat{i}+1\hat{j}+3\hat{k})(11\hat{i}+11\hat{j}+15\hat{k})\\ \\ \mapsto\sf\:W=44+11+45\\ \\ \mapsto\underline{\boxed{\bf{\gray{W=100\:J}}}}\:\orange{\bigstar}

Answered by Anonymous
17

\rule{200}3

\Huge{\red{\underline{\textsf{Answer}}}}

 \textbf{Given:–} \sf Force =4 \hat{\imath} +  \hat{\jmath} + 3 \hat{k}N

\rule{200}3

 \textbf{Displacement}

\longrightarrow \sf \vec{d} = (3 \hat{\imath} + 2 \hat{\jmath} - 6 \hat{k}) \sim (14 \hat{\imath} + 13 \hat{\jmath} + 19 \hat{k})

\longrightarrow \sf \vec{d} =  (14 - 3)i + (13 - 2)j + (9 - [-6])k

\orange\longrightarrow \sf\orange{ \vec{d} = 11  \hat{\imath} + 11 \hat{\jmath} + 15 \hat{k}N}

\rule{200}3

Now, Work done = force × Displacement

\leadsto \sf W = (4 \hat{\imath} +  \hat{\jmath} + 3 \hat{k}N) \times (11  \hat{\imath} + 11 \hat{\jmath} + 15 \hat{k}N)

\leadsto \sf W = (11 \times 4) + (1 \times 11) + (3 \times 15)

\leadsto \sf W = (44 + 11 + 45)

\purple\leadsto\large\underline\mathtt\purple{\fbox{W = 100 joules}}

\rule{200}3

Similar questions