Physics, asked by Sagnik2003, 1 year ago

A particle moves in a straight line from a point with an initial velocity 10m/s and an retardation of 2m/s^2. Find the displacement and velocity of the particle after (i) t=5sec & (ii) t=10sec.

Friends pls solve this sum...it is urgent... ​

Answers

Answered by lAravindReddyl
40

\boxed{\mathsf{\green{Answer}}}

At t = 5sec

velocity = 0 m/s

Displacement = 25m

At t = 10sec

velocity = -10m/s

Displacement = 0m

\boxed{\mathsf{\green{Explanation}}}

Given:

  • u = 10m/s
  • a = -2m/s

To find:

Displacement and velocity after

(i) t = 5sec

(ii) t = 10sec

Solution

At t = 5sec

\boxed{\mathsf{\blue{v = u + at}}}

\mathsf{v = 10 + (-2)(5)}

\mathsf{v = 10 -10}

\mathsf{v = 0}

\boxed{\mathsf{\blue{S = ut + \dfrac{1}{2}a{t}^{2}}}}

\mathsf{S = (10)(5) + \dfrac{1}{2}(-2)({5})^{2}}

\mathsf{S = 50-25}}

\mathsf{S = 25m}

At t = 10sec

\boxed{\mathsf{\pink{v = u + at}}}

\mathsf{v = 10 + (-2)(10)}

\mathsf{v = 10 -20}

\mathsf{v = -10 m{s}^{-1}}

\boxed{\mathsf{\pink{S = ut + \dfrac{1}{2}a{t}^{2}}}}

\mathsf{S = (10)(10) + \dfrac{1}{2}(-2)({10})^{2}}

\mathsf{S = 100 -100}

\mathsf{S = 0m}

\texttt{\blue{Aravind}\: \red{Reddy}....!}

Answered by Anonymous
16

\bf{\huge{\boxed{\underline{\mathbb{\green{Answer:}}}}}}

 \sf{at \: time = 5sec}

Velocity = 0 m/s

Displacement = 25 m

 \sf{at \: time = 10 sec}

 \huge \tt{given \:   - > }

u = 10m/s

a = -2m/s

NOW , WE HAVE TO FIND DISPLACEMENT AND VELOCITY AFTER AT :-

¡) time (t) = 5 sec

¡¡) time (t) = 10 sec

 \huge \tt{solution  -  > }

  \implies\sf{at \: time = 5sec}

BY USING FORMULA

\tt{\boxed{{\mathbb{\green{v  = u \:  +  \: a \: t}}}}}

 \tt{v = 10 + ( - 2)(5)} \\  \tt{v = 10 - 10} \\  \tt{v = 0 \: m {s}^{ - 1} }

\tt{\boxed{{\mathbb{\green{s = u \: t \:  +  \frac{1}{2} \: a \:  {t}^{2}  }}}}}

 \tt{s \:  = (10)(5) +  \frac{1}{2} ( - 2) ({5})^{2} }

 \tt{s = 50 - 25}

   \tt{s = 25m}

  \implies\sf{at \: time = 10 sec}

\tt{\boxed{{\mathbb{\green{v  = u \:  +  \: a \: t}}}}}

 \tt{v = 10 + ( - 2)(10)} \\  \tt{v  = 10 - 20}  \\  \tt{v =  - 10 \: m {s}^{ - 1} }

\tt{\boxed{{\mathbb{\green{s = u \: t \:  +  \frac{1}{2} \: a \:  {t}^{2}  }}}}}

 \tt{s = (10)(10)  + \frac{1}{2} ( - 2)( {10})^{2} } \\   \\ \tt{s = 100 - 100} \\  \\  \tt{s = 0 \: m}

Similar questions