Physics, asked by jhaameesha8, 7 months ago

A particle moves in a straight line with acceleration 'a'at time 't' where a=-1/t².at time t=15 the particle has a velocity =3ms¹ then velocity at t=4​

Answers

Answered by Anonymous
29

Answer:

 \boxed{\mathfrak{Velocity \ at \ 4 \ s = 2.8 \ m/s}}

Explanation:

Accelration w.r.t. time:

 \rm a =  \dfrac{1}{ {t}^{2} }

Rate of change of velocity is known as accelration:

 \rm \implies a =  \dfrac{dv}{dt}  \\  \\  \rm \implies  \dfrac{dv}{dt} =  \dfrac{1}{ {t}^{2} }  \\  \\  \rm \implies \int\limits^v_3dv = \int\limits^{t = 4}_{t = 15} \dfrac{1}{ {t}^{2} } .dt \\  \\  \rm \implies v\Big|_ 3^v =  -  \frac{1}{t} \Big|_{15}^{4} \\  \\ \rm \implies v - 3 = ( -  \dfrac{1}{4}  - ( -  \dfrac{1}{15}) ) \\  \\ \rm \implies v - 3 =   \dfrac{1}{15}  -  \dfrac{1}{4}  \\  \\  \rm \implies v - 3 =   \dfrac{4 - 15}{60} \\  \\  \rm \implies v - 3 =  -   \dfrac{11}{60}  \\  \\  \rm \implies v  = 3  -  \dfrac{11}{60}  \\  \\  \rm \implies v  =   \dfrac{180 - 11}{60}  \\  \\   \rm \implies v  =   \dfrac{169}{60}  \: m {s}^{ - 1}  \\  \\ \rm \implies v  =   2.8  \: m {s}^{ - 1}

Similar questions