Physics, asked by sanjatkumar42, 1 year ago

A particle moves in x-y plane according to equation, x = 4t² +5t +16, y = 5t . x and y being in meter and t in second . Find the acceleration of the particle.​

Answers

Answered by Anonymous
7

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

Position of the particle along x - axis :

 \sf{x = 4 {t}^{2} + 5t  + 16 }

Position of the particle along y - axis :

 \sf{y = 5t}

Along X - axis :

Differentiating x w.r.t to t,we get :

 \sf{v =  \frac{dx}{dt} } \\  \\  \leadsto \:  \sf{v =  \frac{d(4 {t}^{2} + 5t + 18) }{dt} } \\  \\  \\   \huge{\leadsto \:  \sf{v = (\: 8t + 5) \:  {ms}^{ - 1} }}

Differentiating v w.r.t to t,we get :

 \sf{a  = \frac{dv}{dt} } \\  \\  \leadsto \ \sf{a =  \frac{d(8t + 5)}{dt} } \\  \\  \huge{ \leadsto \:  \sf{a = 8 \:  {ms}^{ - 2} }}

Along Y - axis :

Differentiating y w.r.t to t,we get :

 \sf{v =  \frac{dy}{dt} } \\  \\  \leadsto \: \sf{v =  \frac{d(5t)}{dt} } \\  \\  \huge{ \leadsto \:  \sf{v = 5 \:  {ms}^{ - 1} }}

Differentiating v w.r.t to t,we get :

 \sf{a =  \frac{dv}{dt} } \\  \\  \leadsto \:  \sf{{a =  \frac{d(5)}{dt} }}  \\  \\  \huge{ \leadsto \:  \sf{a = 0 \:  {ms}^{ - 2} }}

Since,acceleration of the particle along y - axis is zero,acceleration on x - axis is only considered

Thus,the acceleration of the particle is 8 m/s²

Answered by ShivamKashyap08
9

{ \huge \bf { \mid{ \overline{ \underline{Question}}} \mid}}

A particle moves in x-y plane according to equation, x = 4t² +5t +16, y = 5t . x and y being in meter and t in second . Find the acceleration of the particle.

\huge{\bold{\underline{\underline{Answer}}}}

\huge{\bold{\underline{Given:-}}}

  • x = 4t² + 5t + 16
  • y = 5t
  • t = Time period.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

Along X - Axis:-

\large{\boxed{\tt x = 4t^2 +5t + 16}}

Differentiating the Equation to Get velocity,

\large{\tt \hookrightarrow v_x = \dfrac{dx}{dt}}

\large{\tt \hookrightarrow v_x = \dfrac{d(4t^2 + 5t + 16)}{dt}}

\large{\tt \hookrightarrow v_x = 8t + 5 + 0}

\large{\hookrightarrow {\underline{\tt v_x = 8t + 5 \: m/s}}}

Differentiating again to get Acceleration,

\large{\tt \hookrightarrow a_x = \dfrac{dv_x}{dt}}

\large{\tt \hookrightarrow a_x = \dfrac{d(8t + 5)}{dt}}

\large{\tt \hookrightarrow a_x = 8 + 0}

\large{\hookrightarrow {\underline{\tt a_x = 8 \: m/s^2}}}

Therefore, Acceleration for x - component is 8 m/s².

\rule{300}{1.5}

\rule{300}{1.5}

Along Y - Axis:-

\large{\boxed{\tt y = 5t }}

Differentiating the Equation to Get velocity,

\large{\tt \hookrightarrow v_y = \dfrac{dy}{dt}}

\large{\tt \hookrightarrow v_y = \dfrac{d(5t )}{dt}}

\large{\tt \hookrightarrow v_y =   5 }

\large{\hookrightarrow {\underline{\tt v_y = 5 \: m/s}}}

Differentiating again to get Acceleration,

\large{\tt \hookrightarrow a_y = \dfrac{dv_y}{dt}}

\large{\tt \hookrightarrow a_y = \dfrac{d( 5)}{dt}}

\large{\tt \hookrightarrow a_y =  0}

\large{\hookrightarrow {\underline{\tt a_y = 0 \: m/s^2}}}

Therefore, Acceleration for y - component is 0 m/s².

\rule{300}{1.5}

\rule{300}{1.5}

Magnitude of Acceleration:-

\large{\boxed{\tt a = \sqrt{(a_x)^2 + (a_y)^2}}}

Substituting the values,

\large{\tt \hookrightarrow a = \sqrt{(8)^2 + (0)^2}}

\large{\tt \hookrightarrow a = \sqrt{64 + 0}}

\large{\tt \hookrightarrow a = \sqrt{64}}

\huge{\boxed{\boxed{\tt a = 8 \: m/s^2}}}

So, the Acceleration is 8 m/s².

\rule{300}{1.5}

Similar questions