Physics, asked by Anonymous, 3 months ago

A particle moving along x -axis has acceleration f, at

time t, given by :–


f = f_0 \Bigg( 1 -\dfrac{t}{T}\Bigg)
where  f_0 and T are

constants. The particle at t = 0 has zero velocity. In
the time interval b/w t = 0 and the ins tant when
f = 0, the particle’s velocity (vx) is ?

Answers

Answered by Anonymous
6

Answer:

{\bold{\green{{\underline{Given}}}}}

f = acceleration

f = f_0(1 -  \frac{t}{T} )

t = 0 , V = 0

_______________________

{\pmb{\underline{\sf{Required \:  Solution}}}}

:  \implies0 = f _{0}(1 -  \frac{t}{T} ) \\  :  \implies1 -  \frac{t}{T}  = 0 \\ :  \implies \frac{t}{T}  = 1 \\ \boxed  {\implies \: t \:  =  \: T}

\;\large{\boxed{\bf{\red{(t = T) = ( V_{x})}}}}

 :  \implies \: f =  f_{0}(1 -  \frac{t}{T} ) \\  \boxed{f = acc {}^{n}  =  \frac{dv}{dt} } \\   \\  \implies\frac{dv}{dt}  =  f_{0}(1 -  \frac{t}{T} )

  :  \implies\int \limits _{0}^{vx} dv = f _{0}  \int \limits_{0}^{T}  (1 -  \frac{t}{T} )dt \\  \implies \: Vx =   \: (f _{0}(  \frac{t - t {}^{2} }{2T} )\int\limits_{0}^{T}\\  \implies Vx = \: f _{0}( \frac{T -T {}^{2}  }{2  t} ) \\ \\ :\implies f_0 (t - \frac{t}{2})\\ \\ \boxed{Vx =  \frac{f _{0}T}{2} }

Answered by diajain01
53

{\boxed{\underline{\tt{\orange{Required  \: Answer:-}}}}}

 \displaystyle \sf \large{v = f_0  \frac{T}{2} }

★SOLUTION:-

In this problem, acceleration is variable.

 :  \longrightarrow \displaystyle \sf{f =  \frac{dv}{dt} }

:\longrightarrow\displaystyle\sf{f_0(1- \frac{t}{T} )}

At,

  •  \sf{t = 0}

  •  \sf{f = f_0}

  • \sf{T = T}

  •  \sf{f = 0 }

We have to calculate the velocity of the particle in the time from t = 0 to t= 1s.

 :  \longrightarrow \displaystyle \sf{ \frac{dv}{dt}  =f_0 (1 -  \frac{t}{T} )}

Integrating both sides:-

 : \longrightarrow \displaystyle \sf{\int dv = \int_0^T f_0 (1- \frac{t}{T} )dt}

:\longrightarrow\displaystyle\sf{v = f_0[t- \frac{ {t}^{2} }{2T} ]_0^T}

:\longrightarrow\displaystyle\sf{v = f_0[T -  \frac{{T}^{2} }{2T}] }

:\longrightarrow\displaystyle\sf{v = f_0[T -  \frac{T }{2}] }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \boxed{ \huge{ \pink{ \underline{ \underline{\displaystyle{\sf{v = f_0 \frac{T}{2}  }}}}}}}}

Similar questions