Physics, asked by ishamishra369, 8 months ago

A particle of mass 5 g is moving in a circle of radius 0.5 metre with an angular velocity of 6 Radian per second find the change in linear velocity in half for resolution and the magnitude of acceleration of the particle​

Answers

Answered by Anonymous
7

Explanation:

\sf\large\underline\purple{Given:-}

 \displaystyle \sf \star \: mass \:  = 5 \times  {10}^{ - 3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \displaystyle \sf \star \:   \: r = 0.5m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:    \\  \\ \displaystyle \sf \star \: angular \: velocity \:  = 6 \frac{rad}{s}

\sf\large\underline\purple{Solution:-}

  \small\boxed{ \sf{  \underline{ \bold{1) : - after \: half \: a \: revolution \: the \: velocity \: changes its \: direction }}}}

 \displaystyle \sf \bigstar \: change \: in \: momentum  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \displaystyle \sf \longrightarrow \: mv - ( - mv)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\   \displaystyle \sf \longrightarrow 2mv = 2m \times rw  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\   \displaystyle \sf \longrightarrow 2mv = 2 \times 5 \times  {10}^{ - 3}  \times 0.5 \times 6 \\  \\   \displaystyle \sf \longrightarrow 0.3kg {m}^{ - s}  \:

__________________________________________________

\sf\large\underline\purple{Answer\:\:\:2:-}

 \small \boxed{ \sf{ \underline{ \bold{2.) \: change \: in \: linear \: momentum}}}}

  \displaystyle \sf \longrightarrow  \frac{dp}{dt}  = f = ma \\  \\   \displaystyle \sf \longrightarrow a \:  =  \frac{1}{m}  \frac{dp}{dt}  \\  \\   \displaystyle \sf \longrightarrow a =  \frac{1}{5 \times  {10}^{ - 3} }  \times 0.03 = 6 \ {m}^{ { - s}^{2} }

Similar questions