Physics, asked by RahulM13, 5 months ago

A particle of mass m is suspended from the ceiling through a string of length L. The particle revolves in a horizontal circle of radius L/2. The speed of the particle is

Options
1) √gL
2) √gL/12
3) √gL/√12
4) √gL/(12)^1/4​

Answers

Answered by shadowsabers03
20

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(20,0){\circle*{2}}\put(20,0){\line(-1,2){20}}\qbezier(-15,-2)(-19,-1.5)(-20,0)\qbezier(-5,-3.5)(-7.5,-3.3)(-10,-3)\qbezier(5,-3.5)(2.5,-3.5)(0,-3.8)\qbezier(15,-2.1)(7.5,-3.6)(10,-3.1)\qbezier(15,1.9)(18,1.2)(20,0)\qbezier(5,3.2)(7.5,3)(10,2.8)\qbezier(-5,3.2)(-2.3,3.5)(0,3.4)\qbezier(-15,2)(-13,2.6)(-10,2.9)\put(0,0){\circle*{1}}\put(0,0){\vector(1,0){20}}\put(20,0){\vector(0,-1){20}}\put(20,0){\vector(-1,2){10}}\multiput(0,0)(0,4){10}{\line(0,1){2}}\qbezier(0,34)(2,34)(2.4,35)\put(10,26){\vector(-1,2){7}}\put(13,20){\vector(1,-2){9}}\put(11,22){\sf{L}}\multiput(1,30)(16.8,-24.5){2}{$\theta$}\put(-20,40){\line(1,0){40}}\multiput(-20,40)(4,0){11}{\qbezier(0,0)(1,1)(2,2)}\put(22,-1){\sf{m}}\put(20,0){\vector(0,1){20}}\put(20,0){\vector(-1,0){10}}\qbezier(20,4)(19.25,4)(18.5,3)\put(6.5,15){\sf{T}}\put(17,-23){\sf{mg}}\put(6,-3){\sf{R}}\footnotesize\put(22,17){$\sf{T\cos\theta}$}\put(7,2){$\sf{T\sin\theta}$}\end{picture}

From the fig., we get,

\sf{\longrightarrow \sin\theta=\dfrac{R}{L}}

\sf{\longrightarrow \cos\theta=\dfrac{\sqrt{L^2-R^2}}{L}}

\sf{\longrightarrow \tan\theta=\dfrac{R}{\sqrt{L^2-R^2}}}

Since the net vertical force acting on the particle is zero, we have,

\sf{\longrightarrow T\cos\theta=mg}

\sf{\longrightarrow \dfrac{T\sqrt{L^2-R^2}}{L}=mg}

\sf{\longrightarrow T=\dfrac{mgL}{\sqrt{L^2-R^2}}}

The particle revolves in a horizontal circle, so it has centripetal force which is provided by the horizontal component of tension in the string.

\sf{\longrightarrow T\sin\theta=\dfrac{mv^2}{R}}

\sf{\longrightarrow\dfrac{mgL}{\sqrt{L^2-R^2}}\cdot\dfrac{R}{L}=\dfrac{mv^2}{R}}

\sf{\longrightarrow v=\sqrt{\dfrac{gR^2}{\sqrt{L^2-R^2}}}}

\sf{\longrightarrow v=\sqrt{gR\cdot\dfrac{R}{\sqrt{L^2-R^2}}}\quad\quad\dots(1)}

\sf{\longrightarrow\underline{\underline{v=\sqrt{gR\tan\theta}}}}

In the question, \sf{R=\dfrac{L}{2}.}

So, from (1),

\sf{\longrightarrow v=\sqrt{g\cdot\dfrac{L}{2}\cdot\dfrac{L}{2\sqrt{L^2-\left(\dfrac{L}{2}\right)^2}}}}

\sf{\longrightarrow v=\sqrt{g\cdot\dfrac{L}{2}\cdot\dfrac{L}{2\sqrt{L^2-\dfrac{L^2}{4}}}}}

\sf{\longrightarrow v=\sqrt{g\cdot\dfrac{L}{2}\cdot\dfrac{L}{2\sqrt{\dfrac{3L^2}{4}}}}}

\sf{\longrightarrow v=\sqrt{g\cdot\dfrac{L}{2}\cdot\dfrac{2L}{2L\sqrt3}}}

\sf{\longrightarrow v=\sqrt{\dfrac{gL}{2\sqrt3}}}

\sf{\longrightarrow v=\sqrt{\dfrac{gL}{\sqrt{12}}}}

\sf{\longrightarrow\underline{\underline{v=\dfrac{\sqrt{gL}}{12^{\frac{1}{4}}}}}}

Hence (4) is the answer.

Similar questions