Physics, asked by likithusp6215, 1 year ago

A particle of unit mass undergoes one dimensional motion such that its velocity varies according to v(x)=bx^-{2n} where h and n are constants amd x is the position of the particle. the acceleration of particle as function of x,is given by

Answers

Answered by Anonymous
736
Check this attachment :-)
Attachments:
Answered by phillipinestest
174

Answer: The acceleration of particle is a=-2n\quad b2x^{ -4n-1 }

Given is the value of velocity v as a function x, v(x)={ bx }^{ -2n }

\Rightarrow therefore for acceleration to be calculated a=\frac { dv }{ dt } \quad and\quad v=\frac { dx }{ dt } ,

thereby,

             a=(\frac { dv }{ dt } )(\frac { dx }{ dt } )

             \Rightarrow a=(\frac { dv }{ dx } )xv.

Therefore, \frac { dv }{ dx } =\frac { d(bx^{ -2n }) }{ dx }

             \Rightarrow \frac { dv }{ dx } =-2n\quad bx^{ -2n–1 }.

Hence, a=(\frac { dv }{ dx } )xv

             \Rightarrow a=(-2n\quad bx^{ -2n-1 })xv

             \Rightarrow a=(-2n\quad bx^{ -2n-1 })x(bx^{ -2n })

             \Rightarrow a=-2n\quad b2x^{ -4n-1 }

Similar questions