Physics, asked by sanjuspatil1250, 8 months ago

A particle perform uniform circular motion with radius 1 meter .If the frequency of revolution is 120 rpm Find -
1. period of revolution
2. linear speed
3. centripetal acceleration.​

Answers

Answered by smartykiller
4

Answer:

Hey mate

Explanation:

here is ur answer

Attachments:
Answered by Bᴇʏᴏɴᴅᴇʀ
10

Answer:-

\red{\bigstar} Period of revolution = 0.5 sec

\red{\bigstar} Linear speed = 12.56 m/s

\red{\bigstar} Centripetal acceleration = 50.24 rad/

Given:-

Radius [r] = 1 m

Revolutions = 120 rpm

To Find:-

1. Period of revolution.

2. Linear speed

3. Centripetal acceleration

Solution:-

120 rpm rps

\sf \dfrac{120}{60}

2 rps

\sf\red{\omega = 2 \pi n}

where n = no. of revolutions

\sf{\omega = 2 \pi \times 2} rad/s

\sf{\omega = 4 \pi } rad/s

Case 1:-

\pink{\bigstar} \sf{\boxed{\red{Time \: period <strong>[</strong><strong>T</strong><strong>]</strong><strong> </strong><strong>=</strong><strong> </strong> \dfrac{2 \pi}{\omega}}}}

T = \sf \dfrac{2 \pi}{4 \pi}

T = \sf \dfrac{1}{2}

T = 0.5 sec.

Case 2:-

\pink{\bigstar}\sf{\boxed{\red{Linear \: velocity[v] = \omega \times r}}}

v = 4π × 1

v = 4π

v = 4 × 3.14

v = 12.56 m/s

Case 3:-

\pink{\bigstar}\sf{\boxed{\red{Centripetal \: acceleration [a] = r \omega ^{2}}}}

a = 1 × (4π)²

a = 1 × 16π

a = 16π

a = 16 × 3.14

a = 50.24 rad/

Similar questions